[en] Convergent evolution of small body size occurs across many vertebrate clades and may reflect an evolutionary response to shared selective press- ures. However it remains unclear if other aspects of phenotype undergo convergent evolution in miniaturized lineages. Here we present a comparative analysis of body size and shape evolution in marine angelfishes (Pomacanthidae), a reef fish family characterized by repeated transitions to small body size. We ask if lineages that evolve small sizes show convergent evolution in body shape. Our results reveal that angelfish lineages evolved three different stable size optima with one corresponding to the group of pygmy angelfishes (Centropyge). Then, we test if the observed shifts in body size are associated with changes to new adaptive peaks in shape. Our data suggest that independent evolution to small size optima have induced repeated convergence upon deeper body and steeper head profile in Centropyge. These traits may favour manoeuvrability and visual aware- ness in these cryptic species living among corals, illustrating that functional demands on small size may be related to habitat specialization and predator avoidance. The absence of shape convergence in large marine angelfishes also suggests that more severe requirements exist for small than for large size optima.
Research Center/Unit :
AFFISH-RC - Applied and Fundamental FISH Research Center - ULiège
Disciplines :
Zoology
Author, co-author :
Frederich, Bruno ; Université de Liège > Département de Biologie, Ecologie et Evolution > Océanographie biologique
Santini, Francesco
Konow, Nicolai
Schnitzler, Joseph ; Université de Liège > Département de Biologie, Ecologie et Evolution > Océanographie biologique
Lecchini, David
Alfaro, Michael
Language :
English
Title :
Body shape convergence driven by small size optimum in marine angelfishes
scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.
Bibliography
MacNulty DR, Smith DW, Mech LD, Eberly LE. 2009 Body size and predatory performance in wolves: Is bigger better? J. Anim. Ecol. 78, 532-539. (doi:10.1111/j.1365-2656.2008.01517.x)
Sander PM et al. 2011 Biology of the sauropod dinosaurs: The evolution of gigantism. Biol. Rev. 86, 117-155. (doi:10.1111/j.1469-185X.2010.00137.x)
Hanken J, Wake DB. 1993 Miniaturization of body size: Organismal consequences and evolutionary significance. Annu. Rev. Ecol. Syst. 24, 501-519. (doi:10.1146/annurev.es.24.110193.002441)
Lee MSY, Cau A, Naish D, Dyke GJ. 2014 Sustained miniaturization and anatomical innovation in the dinosaurian ancestors of birds. Science 345, 562-566. (doi:10.1126/science.1252243)
Grant PR, Grant BR. 2006 Evolution of character displacement in Darwin's finches. Science 313, 224-226. (doi:10.1126/science.1128374)
Yeh J. 2002 The effect of miniaturized body size on skeletal morphology in frogs. Evolution 56, 628-641. (doi:10.1111/j.0014-3820.2002.tb01372.x)
Eschmeyer WN, Fricke R, van der Laan R. 2016 Catalog of fishes. See http://research.calacademy. org/research/ichthyology/catalog/fishcatmain.asp. (accessed August 2016).
Gaither MR, Schultz JK, Bellwood DR, Pyle RL, DiBattista JD, Rocha LA, Bowen BW. 2014 Evolution of pygmy angelfishes: Recent divergences, introgression, and the usefulness of color in taxonomy. Mol. Phylogenet. Evol. 74, 38-47. (doi:10.1016/j.ympev.2014.01.017)
Bellwood DR, van Herwerden L, Konow N. 2004 Evolution and biogeography of marine angelfishes (Pisces: Pomacanthidae). Mol. Phylogenet. Evol. 33, 140-155. (doi:10.1016/j. ympev.2004.04.015)
Drummond AJ, Rambaut A. 2007 BEAST: Bayesian evolutionary analysis by sampling trees. BMC Evol. Biol. 7, 214. (doi:10.1186/1471-2148-7-214)
Blake RW. 2004 Fish functional design and swimming performance. J. Fish Biol. 65, 1193-1222. (doi:10.1111/j.1095-8649.2004.00568.x)
Zelditch ML, Swiderski DL, Sheets HD, Fink WL. 2004 Geometric morphometrics for biologists: A primer. San Diego, CA: Elsevier Academic Press.
R Development Core Team. 2011 R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing. http://www.R-project.org.
Ingram T, Mahler DL. 2013 SURFACE: Detecting convergent evolution from comparative data by fitting Ornstein-Uhlenbeck models with stepwise Akaike information criterion. Methods Ecol. Evol. 4, 416-425. (doi:10.1111/2041-210X.12034)
Butler MA, King AA. 2004 Phylogenetic comparative analysis: A modeling approach for adaptive evolution. Am. Nat. 164, 683-695. (doi:10.1086/426002)
Adams DC. 2014 A method for assessing phylogenetic least squares models for shape and other high-dimensional multivariate data. Evolution 68, 2675-2688. (doi:10.1111/evo.12463)
Clavel J, Escarguel G, Merceron G. 2015 mvMORPH: An R package for fitting multivariate evolutionary models to morphometric data. Methods Ecol. Evol. 6, 1311-1319. (doi:10.1111/2041-210X.12420)
Burnham KP, Anderson DR. 2002 Model selection and multimodel inference: A practical informationtheoretic approach. New York, NY: Springer.
Allen GR. 1981 Butterfly and angelfishes of the world. Melle, Germany: Mergus.
Konow N, Bellwood DR. 2011 Evolution of high trophic diversity based on limited functional disparity in the feeding apparatus of marine angelfishes (f. Pomacanthidae). PLoS ONE 6, e24113. (doi:10.1371/journal.pone.0024113)
Herrel A, Van Damme R, De Vree F. 1996 Sexual dimorphism of head size in Podarcis hispanica atrata: Testing the dietary divergence hypothesis by bite force analysis. Neth. J. Zool. 46, 253-262. (doi:10.1163/156854295X00203)
Simpson GG. 1944 The tempo and mode in evolution. New York, NY: Columbia University Press.
Bellwood DR, Goatley CHR, Brandl SJ, Bellwood O. 2014 Fifty million years of herbivory on coral reefs: Fossils, fish and functional innovations. Proc. R. Soc. B 281, 20133046. (doi:10.1098/rspb. 2013.3046)
Frédérich B, Santini F, Konow N, Schnitzler J, Lecchini D, Alfaro ME. 2017 Data from: Body shape convergence driven by small size optimum in marine angelfishes. Dryad Digital Repository. (http://dx.doi.org/10.5061/dryad.5br8k)
This website uses cookies to improve user experience. Read more
Save & Close
Accept all
Decline all
Show detailsHide details
Cookie declaration
About cookies
Strictly necessary
Performance
Strictly necessary cookies allow core website functionality such as user login and account management. The website cannot be used properly without strictly necessary cookies.
This cookie is used by Cookie-Script.com service to remember visitor cookie consent preferences. It is necessary for Cookie-Script.com cookie banner to work properly.
Performance cookies are used to see how visitors use the website, eg. analytics cookies. Those cookies cannot be used to directly identify a certain visitor.
Used to store the attribution information, the referrer initially used to visit the website
Cookies are small text files that are placed on your computer by websites that you visit. Websites use cookies to help users navigate efficiently and perform certain functions. Cookies that are required for the website to operate properly are allowed to be set without your permission. All other cookies need to be approved before they can be set in the browser.
You can change your consent to cookie usage at any time on our Privacy Policy page.