[en] In this work, we propose a simple yet effective solution to the problem of connectome inference in calcium imaging data. The proposed algorithm consists of two steps. First, processing the raw signals to detect neural peak activities. Second, inferring the degree of association between neurons from partial correlation statistics. This paper summarises the methodology that led us to win the Connectomics Challenge, proposes a simplified version of our method, and finally compares our results with respect to other inference methods.
Disciplines :
Computer science
Author, co-author :
Sutera, Antonio ; Université de Liège > Dép. d'électric., électron. et informat. (Inst.Montefiore) > Algorith. des syst. en interaction avec le monde physique
Joly, Arnaud ; Université de Liège > Dép. d'électric., électron. et informat. (Inst.Montefiore) > Systèmes et modélisation
François-Lavet, Vincent
Qiu, Zixiao ; Université de Liège > Dép. d'électric., électron. et informat. (Inst.Montefiore) > Smart grids
Ernst, Damien ; Université de Liège > Dép. d'électric., électron. et informat. (Inst.Montefiore) > Smart grids
Geurts, Pierre ; Université de Liège > Dép. d'électric., électron. et informat. (Inst.Montefiore) > Algorith. des syst. en interaction avec le monde physique
Language :
English
Title :
Simple connectome inference from partial correlation statistics in calcium imaging
Publication date :
June 2017
Main work title :
Neural Connectomics Challenge
Editor :
Soriano, Jordi
Battaglia, Demian
Guyon, Isabelle
Lemaire, Vincent
Orlandi, Javier
Ray, Bisakha
Publisher :
Springer
ISBN/EAN :
978-3-319-53070-3
Collection name :
The Springer Series on Challenges in Machine Learning
Pages :
23-36
Peer reviewed :
Peer reviewed
Tags :
CÉCI : Consortium des Équipements de Calcul Intensif
F.R.S.-FNRS - Fonds de la Recherche Scientifique PASCAL2 IUAP DYSCO
Commentary :
This is the paper that explains the methodology we developed for winning the Connectomics challenge for which the goal was to infer from observed data the wiring diagram from the brain. 144 teams were participating to this challenge. This article was first published in JMLR proceedings and the following reference is still valid: Antonio Sutera, Arnaud Joly, Vincent Francois-Lavet, Aaron Qiu, Gilles Louppe, Damien Ernst, Pierre Geurts ; Proceedings of the Neural Connectomics Workshop at ECML 2014, PMLR (JMLR) 46:23-35, 2015.