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Abstract In this work, we propose a simple yet effective solution to the problem of
connectome inference in calcium imaging data. The proposed algorithm consists of
two steps. First, processing the raw signals to detect neural peak activities. Second,
inferring the degree of association between neurons from partial correlation statis-
tics. This paper summarises the methodology that led us to win the Connectomics
Challenge, proposes a simplified version of our method, and finally compares our
results with respect to other inference methods.
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1 Introduction

The human brain is a complex biological organ made of about 100 billion of neurons,
each connected to, on average, 7,000 other neurons (Pakkenberg et al. 2003). Unfor-
tunately, direct observation of the connectome, the wiring diagram of the brain, is not
yet technically feasible. Without being perfect, calcium imaging currently allows for
real-time and simultaneous observation of neuron activity from thousands of neu-
rons, producing individual time-series representing their fluorescence intensity. From
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these data, the connectome inference problem amounts to retrieving the synaptic con-
nections between neurons on the basis of the fluorescence time-series. This problem
is difficult to solve because of experimental issues, including masking effects (i.e.
some of the neurons are not observed or confounded with others), the low sampling
rate of the optical device with respect to the neural activity speed, or the slow decay
of fluorescence.

Formally, the connectome can be represented as a directed graph G = (V, E),
where V is a set of p nodes representing neurons, and E ⊆ {(i, j) ∈ V × V } is
a set of edges representing direct synaptic connections between neurons. Causal
interactions are expressed by the direction of edges: (i, j) ∈ E indicates that the
state of neuron j might be caused by the activity of neuron i . In those terms, the
connectome inference problem is formally stated as follows: Given the sampled
observations {xt

i ∈ R|i ∈ V, t = 1, . . . , T } of p neurons for T time intervals, the
goal is to infer the set E of connections in G.

In this paper, we present a simplified - and almost as good - version of the winning
method1 of the Connectomics Challenge,2 as a simple and theoretically grounded
approach based on signal processing techniques and partial correlation statistics. The
paper is structured as follows: Sect. 2 describes the signal processing methods applied
on fluorescent calcium time-series; Sect. 3 then presents the proposed approach and
its theoretical properties; Sect. 4 provides an empirical analysis and comparison with
other network inference methods, while finally, in Sect. 5 we discuss our work and
provide further research directions. Additionally, Appendix A further describes, in
full detail, our actual winning method which gives slightly better results than the
method presented in this paper, at the cost of parameter tuning. Appendix B provides
supplementary results on other datasets.

2 Signal Processing

Under the simplifying assumption that neurons are on-off units, characterised by
short periods of intense activity, or peaks, and longer periods of inactivity, the first
part of our algorithm consists of cleaning the raw fluorescence data. More specifi-
cally, time-series are processed using standard signal processing filters in order to:
(i) remove noise mainly due to fluctuations independent of calcium, calcium fluc-
tuations independent of spiking activity, calcium fluctuations in nearby tissues that
have been mistakenly captured, or simply by the imaging process; (ii) to account for
fluorescence low decay; and (iii) to reduce the importance of high global activity in
the network. The overall process is illustrated in Fig. 1.

As Fig. 1a shows, the raw fluorescence signal is very noisy due to light scattering
artifacts that usually affect the quality of the recording (Lichtman and Denk 2011).
Accordingly, the first step of our pipeline is to smoothe the signal, using one of the

1Code available at https://github.com/asutera/kaggle-connectomics.
2http://connectomics.chalearn.org.

https://github.com/asutera/kaggle-connectomics
http://connectomics.chalearn.org
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Fig. 1 Signal processing pipeline for extracting peaks from the raw fluorescence data

following low-pass filters for filtering out high frequency noise:

f1(xt
i ) = xt−1

i + xt
i + xt+1

i , (1)

f2(xt
i ) = 0.4xt−3

i + 0.6xt−2
i + 0.8xt−1

i + xt
i . (2)

These filters are standard in the signal processing field (Kaiser and Reed 1977;
Oppenheim et al. 1983). For the purposes of illustration, the effect of the filter f1 on
the signal is shown in Fig. 1b.

Furthermore, short spikes, characterized by a high frequency, can be seen as an
indirect indicator of neuron communication, while low frequencies of the signal
mainly correspond to the slow decay of fluorescence. To have a signal that only
has high magnitude around instances where the spikes occur, the second step of our
pipeline transforms the time-series into its backward difference

g(xt
i ) = xt

i − xt−1
i , (3)

as shown in Fig. 1c.
To filter out small variations in the signal obtained after applying the function g,

as well as to eliminate negative values, we use the following hard-threshold filter

h(xt
i ) = xt

i 1(xt
i ≥ τ) with τ > 0, (4)

yielding Fig. 1d where τ is the threshold parameter and 1 is the indicator function.
As can be seen, the processed signal only contains clean spikes.

The objective of the last step of our filtering procedure is to decrease the impor-
tance of spikes that occur when there is high global activity in the network with
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respect to spikes that occur during normal activity. Indeed, we have conjectured
that when a large part of the network is firing, the rate at which observations are
made is not high enough to be able to detect interactions, and that it would therefore
be preferable to lower their importance by changing their magnitude appropriately.
Additionally, it is well-known that neurons may also spike because of a high global
activity (Stetter et al. 2012). In such context, detecting pairwise neuron interactions
from the firing activity is meaningless. As such, the signal output by h is finally
applied to the following function

w(xt
i ) = (xt

i + 1)
1+ 1

∑
j xt

j , (5)

whose effect is to magnify the importance of spikes that occur in cases of low global
activity (measured by

∑
j x t

j ), as observed, for instance, around t = 4s in Fig. 1e.
Note the particular case where there is no activity, i.e.

∑
j x t

j = 0, is solved by setting
w(xt

i ) = 1.
To summarise, the full signal processing pipeline of our simplified approach is

defined by the composed function w ◦ h ◦ g ◦ f1 (resp. f2). When applied to the raw
signal of Fig. 1a, it outputs the signal shown in Fig. 1e.

3 Connectome Inference from Partial Correlation Statistics

Our procedure to infer connections between neurons first assumes that the (filtered)
fluorescence concentrations of all p neurons at each time point can be modelled
as a set of random variables X = {X1, . . . , X p} that are independently drawn from
the same time-invariant joint probability distribution PX . As a consequence, our
inference method does not exploit the time-ordering of the observations (although
time-ordering is exploited by the filters).

Given this assumption, we then propose to use as a measure of the strength of
the connection between two neurons i and j , the Partial correlation coefficient pi, j

between their corresponding random variables Xi and X j , defined by:

pi, j = − �−1
i j

√
�−1

i i �−1
j j

, (6)

where �−1, known as the precision or concentration matrix, is the inverse of the
covariance matrix � of X . Assuming that the distribution PX is a multivariate
Gaussian distribution N (μ,�), it can be shown that pi, j is zero if and only if
Xi and X j are independent given all other variables in X , i.e. Xi ⊥ X j |X−i, j

where X−i, j = X \ {Xi , X j }. Partial correlation thus measures conditional depen-
dencies between variables; therefore it should naturally only detect direct associa-
tions between neurons and filter out spurious indirect effects. The interest of partial
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correlation as an association measure has already been shown for the inference of
gene regulatory networks (De La Fuente et al. 2004; Schäfer and Strimmer 2005).
Note that the partial correlation statistic is symmetric (i.e. pi, j = p j,i ). Therefore,
our approach cannot identify the direction of the interactions between neurons. We
will see in Sect. 4 why this only slightly affects its performance, with respect to the
metric used in the Connectomics Challenge.

Practically speaking, the computation of all pi, j coefficients using Eq. 6 requires
the estimation of the covariance matrix � and then computing its inverse. Given that
typically we have more samples than neurons, the covariance matrix can be inverted
in a straightforward way. We nevertheless obtained some improvement by replacing
the exact inverse with an approximation using only the M first principal components
(Bishop 2006) (with M = 0.8p in our experiments, see Appendix C).

Finally, it should be noted that the performance of our simple method appears to
be quite sensitive to the values of parameters (e.g. choice of f1 or f2 or the value of
the threshold τ ) in the combined function of the filtering and inferring processes. One
approach, further referred to as Averaged Partial correlation statistics, for improving
its robustness is to average correlation statistics over various values of the parameters,
thereby reducing the variance of its predictions. Further details about parameter
selection are provided in Appendix A.

4 Experiments

Data and evaluation metrics. We report here experiments on the normal –1, 2,
3, and 4 datasets provided by the organisers of the Connectomics Challenge (see
Appendix B for experiments on other datasets). Each of these datasets is obtained
from the simulation (Stetter et al. 2012) of different neural networks of 1,000 neurons
and approximately 15,000 edges (i.e. a network density of about 1.5%). Each neuron
is described by a calcium fluorescence time-series of length T = 179500. All infer-
ence methods compared here provide a ranking of all pairs of neurons according to
some association score. To assess the quality of this ranking, we compute both ROC
and precision-recall curves against the ground-truth network, which are represented
by the area under the curves and respectively denoted AUROC and AUPRC. Only the
AUROC score was used to rank the challenge participants, but the precision-recall
curve has been shown to be a more sensible metric for network inference, especially
when network density is small (see e.g. Schrynemackers et al. 2013). Since neu-
rons are not self-connected in the ground-truth networks (i.e. (i, i) /∈ E,∀i ∈ V ),
we have manually set the score of such edges to the minimum possible association
score before computing ROC and PR curves.

Evaluation of the method. The top of Table 1 reports AUROC and AUPRC for all
four networks using, in each case, partial correlation with different filtering functions.
Except for the last two rows that use PCA, the exact inverse of the covariance matrix
was used in each case. These results clearly show the importance of the filters.
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Table 1 Top: Performance on normal –1, 2, 3, 4 with partial correlation and different filtering
functions. Bottom: Performance on normal –1, 2, 3, 4 with different methods

Method \ normal- AUROC AUPRC

1 2 3 4 1 2 3 4

No filtering 0.777 0.767 0.772 0.774 0.070 0.064 0.068 0.072

h ◦ g ◦ f1 0.923 0.925 0.923 0.922 0.311 0.315 0.313 0.304

w ◦ h ◦ g ◦ f1 0.931 0.929 0.928 0.926 0.326 0.323 0.319 0.303

+ PCA 0.932 0.930 0.928 0.926 0.355 0.353 0.350 0.333

Averaging 0.937 0.935 0.935 0.931 0.391 0.390 0.385 0.375

Full method 0.943 0.942 0.942 0.939 0.403 0.404 0.398 0.388

PC 0.886 0.884 0.891 0.877 0.153 0.145 0.170 0.132

GTE 0.890 0.893 0.894 0.873 0.171 0.174 0.197 0.142

GENIE3 0.892 0.891 0.887 0.887 0.232 0.221 0.237 0.215

AUROC increases in average from 0.77 to 0.93. PCA does not really affect AUROC
scores, but it significantly improves AUPRC scores. Taking the average over various
parameter settings gives an improvement of 10% in AUPRC but only a minor change
in AUROC. The last row (“Full method”) shows the final performance of the method
specifically tuned for the challenge (see Appendix A for all details). Although this
tuning was decisive to obtain the best performance in the challenge, it does not
significantly improve either AUROC or AUPRC.

Comparison with other methods. At the bottom of Table 1, we provide as a com-
parison the performance of three other methods: standard (Pearson) correlation (PC),
generalised transfer entropy (GTE), and GENIE3. ROC and PR curves on the normal-
2 network are shown for all methods in Fig. 2. Pearson correlation measures the
unconditional linear (in)dependence between variables and it should thus not be able
to filter out indirect interactions between neurons. GTE (Stetter et al. 2012) was
proposed as a baseline for the challenge. This method builds on Transfer Entropy to
measure the association between two neurons. Unlike our approach, it can predict
the direction of the edges. GENIE3 (Huynh-Thu et al. 2010) is a gene regulatory
network inference method that was the best performer in the DREAM5 challenge
(Marbach et al. 2012). When transposed to neural networks, this method uses the
importance score of variable Xi in a Random Forest model trying to predict X j from
all variables in X \ X j as a confidence score for the edge going from neuron i to
neuron j . However, to reduce the computational cost of this method, we had to limit
each tree in the Random Forest model to a maximum depth of 3. This constraint has
a potentially severe effect on the performance of this method with respect to the use
of fully-grown trees. PC and GENIE3 were applied to the time-series filtered using
the functions w ◦ h ◦ g and h ◦ g ◦ f1 (which gave the best performance), respec-
tively. For GENIE3, we built 10,000 trees per neuron and we used default settings for
all other parameters (except for the maximal tree depth). For GTE, we reproduced
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(a) ROC curves (b) Precision-recall curves

Fig. 2 ROC (left) and PR (right) curves on normal-2 for the compared methods. Areas under the
curves are reported in the legend

the exact same setting (conditioning level and pre-processing) that was used by the
organisers of the challenge.

Partial correlation and averaged partial correlation clearly outperform all other
methods on all datasets (see Table 1 and Appendix B). The improvement is more
important in terms of AUPRC than in terms of AUROC. As expected, Pearson corre-
lation performs very poorly in terms of AUPRC. GTE and GENIE3 work much bet-
ter, but these two methods are nevertheless clearly below partial correlation. Among
these two methods, GTE is slightly better in terms of AUROC, while GENIE3 is
significantly better in terms of AUPRC. Given that we had to limit this latter method
for computational reasons, these results are very promising and a comparison with
the full GENIE3 approach is certainly part of our future works.

The fact that our method is unable to predict edge directions does not seem to be a
disadvantage with respect to GTE and GENIE3. Although partial correlation scores
each edge, and its opposite, similarly, it can reach precision values higher than 0.5
(see Fig. 2b), suggesting that it mainly ranks high pairs of neurons that interact in
both directions. It is interesting also to note that, on normal-2, a method that perfectly
predicts the undirected network (i.e. that gives a score of 1 to each pair (i, j) such
that (i, j) ∈ E or ( j, i) ∈ E , and 0 otherwise) already reaches an AUROC as high
as 0.995 and an AUPRC of 0.789.

5 Conclusions

In this paper, we outlined a simple but efficient methodology for the problem of con-
nectome inference from calcium imaging data. Our approach consists of two steps:
(i) processing fluorescence data to detect neural peak activities; and (ii) inferring the
degree of association between neurons from partial correlation statistics. Its simpli-
fied variant outperforms other network inference methods while its optimized version
proved to be the best method on the Connectomics Challenge. Given its simplicity
and good performance, we therefore believe that the methodology presented in this
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work would constitute a solid and easily-reproducible baseline for further work in
the field of connectome inference.

Acknowledgements A. Joly and G. Louppe are research fellows of the FNRS, Belgium. A. Sutera
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Appendix A. Description of the “Full Method”

This section provides a detailed description of the method specifically tuned for
the Connectomics Challenge. We restrict our description to the differences with
respect to the simplified method presented in the main paper. Most parameters were
tuned so as to maximize AUROC on the normal-1 dataset and our design choices
were validated by monitoring the AUROC obtained by the 145 entries we submitted
during the challenge. Although the tuned method performs better than the simplified
one on the challenge dataset, we believe that the tuned method clearly overfits the
simulator used to generate the challenge data and that the simplified method should
work equally well on new independent datasets. We nevertheless provide the tuned
method here for reference purposes. Our implementation of the tuned method is
available at https://github.com/asutera/kaggle-connectomics.

This appendix is structured as follows: Sect. A.1 describes the differences in terms
of signal processing. Section A.2 then provides a detailed presentation of the averag-
ing approach. Section A.3 presents an approach to correct the pi, j values so as to take
into account the edge directionality. Finally, Sect. A.4 presents some experimental
results to validate the different steps of our proposal.

A.1 Signal Processing

In Sect. 2, we introduced four filtering functions ( f , g, h, and w) that are composed
in sequence (i.e. w ◦ h ◦ g ◦ f ) to provide the signals from which to compute partial
correlation statistics. Filtering is modified as follows in the tuned method:

• In addition to f1 and f2 (Eqs. 1 and 2), two alternative low-pass filters f3 and f4

are considered:

f3(xt
i ) = xt−1

i + xt
i + xt+1

i + xt+2
i , (7)

f4(xt
i ) = xt

i + xt+1
i + xt+2

i + xt+3
i . (8)

• An additional filter r is applied to smoothe differences in peak magnitudes that
might remain after the application of the hard-threshold filter h:

https://github.com/asutera/kaggle-connectomics
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r(xt
i ) = (xt

i )
c, (9)

with c = 0.9.
• Filter w is replaced by a more complex filter w∗ defined as:

w∗(xt
i ) = (xt

i + 1)

(

1+ 1
∑

j xt
j

)k(
∑

j x t
j )

, (10)

where the function k is a piecewise linear function optimised separately for each
filter f1, f2, f3 and f4 (see the implementation for full details). Filter w in the
simplified method is a special case of w∗ with k(

∑
j x t

j ) = 1.

The pre-processed time-series are then obtained by the application of the following
function: w∗ ◦ r ◦ h ◦ g ◦ fi (with i = 1, 2, 3, or 4).

A.2 Weighted Average of Partial Correlation Statistics

As discussed in Sect. 3, the performance of the method (in terms of AUROC) is
sensitive to the value of the parameter τ of the hard-threshold filter h (see Eq. 4),
and to the choice of the low-pass filter (among { f1, f2, f3, f4}). As in the simplified
method, we have averaged the partial correlation statistics obtained for all the pairs
(τ, low-pass filter) ∈ {0.100, 0.101, . . . , 0.209} × { f1, f2, f3, f4}.

Filters f1 and f2 display similar performances and thus were given similar weights
(i.e. resp. 0.383 and 0.345). These weights were chosen equal to the weights selected
for the simplified method. In contrast, filters f3 and f4 turn out, individually, to be
less competitive and were therefore given less importance in the weighted average
(i.e. resp. 0.004 and 0.268). Yet, as further shown in Sect. A.4, combining all 4 filters
proves to marginally improve performance with respect to using only f1 and f2.

A.3 Prediction of Edge Orientation

Partial correlation statistics is a symmetric measure, while the connectome is a
directed graph. It could thus be beneficial to try to predict edge orientation. In this
section, we present an heuristic that modifies the pi j computed by the approach
described before which takes into account directionality.

This approach is based on the following observation. The rise of fluorescence of a
neuron indicates its activation. If another neuron is activated after a slight delay, this
could be a consequence of the activation of the first neuron and therefore indicates
a directed link in the connectome from the first to the second neuron. Given this
observation, we have computed the following term for every pair (i, j):
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si, j =
T −1∑

t=1

1((xt+1
j − xt

i ) ∈ [φ1, φ2]), (11)

that could be interpreted as an image of the number of times that neuron i activates
neuron j . φ1 and φ2 are parameters whose values have been chosen in our experiments
equal to 0.2 and 0.5, respectively. Their role is to define when the difference between
xt+1

j and xt
i can indeed be assimilated to an event for which neuron i activates

neuron j .
Afterwards, we have computed the difference between si, j and s j,i , that we call

zi, j , and used this difference to modify pi, j and p j,i so as to take into account
directionality. Naturally, if zi, j is greater (smaller) than 0, we may conclude that
should there be an edge between i and j , then this edge would have to be oriented
from i to j ( j to i).

This suggests the new association matrix r :

ri, j = 1(zi, j > φ3) ∗ pi, j (12)

where φ3 > 0 is another parameter. We discovered that this new matrix r was not
providing good results, probably due to the fact that directivity was not rewarded
well enough in the challenge.

This has lead us to investigate other ways for exploiting the information about
directionality contained in the matrix z. One of those ways that gave good perfor-
mance was to use as an association matrix:

qi, j = weight ∗ pi, j + (1 − weight) ∗ zi, j (13)

with weight chosen close to 1 (weight = 0.997). Note that with values for weight
close to 1, matrix q only uses the information to a minimum about directivity con-
tained in z to modify the partial correlation matrix p. We tried smaller values for
weight but those provided poorer results.

It was this association matrix qi, j that actually led to the best results of the chal-
lenge, as shown in Table 3 of Sect. A.4.

A.4 Experiments

On the interest of low-pass filters f3 and f4. As reported in Table 2, averaging
over all low-pass filters leads to better AUROC scores than averaging over only two
low-pass filters, i.e. f1 and f2. However this slightly reduces AUPRC.

On the interest of using matrix q rather than p to take into account directivity.
Table 3 compares AUROC and AUPRC with or without correcting the pi, j values
according to Eq. 13. Both AUROC and AUPRC are (very slightly) improved by using
information about directivity.
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Appendix B. Supplementary Results

In this appendix we report the performance of the different methods compared in the
paper on 6 additional datasets provided by the Challenge organisers. These datasets,
corresponding each to networks of 1,000 neurons, are similar to the normal datasets
except for one feature:

lowcon: Similar network but on average with a lower number of connections per
neuron.

highcon: Similar network but on average with a higher number of connections per
neuron.

lowcc: Similar network but on average with a lower clustering coefficient.
highcc: Similar network but on average with a higher clustering coefficient.
normal-3-highrate: Same topology as normal-3 but with a higher firing

frequency, i.e. with highly active neurons.
normal-4-lownoise: Same topology as normal-4 but with a better signal-to-noise

ratio.

The results of several methods applied to these 6 datasets are provided in Table 4.
They confirm what we observed on the normal datasets. Average partial correlation
and its tuned variant, i.e. “Full method”, clearly outperform other network inference
methods on all datasets. PC is close to GENIE3 and GTE, but still slightly worse.
GENIE3 performs better than GTE most of the time. Note that the"Full method"
reported in this table does not use Eq. 13 to slightly correct the values of pi, j to take
into account directivity.

Table 2 Performance on normal –1, 2, 3, or 4 with partial correlation with different averaging
approaches

Averaging \ normal- AUROC AUPRC

1 2 3 4 1 2 3 4

with f1, f2 0.937 0.935 0.935 0.931 0.391 0.390 0.385 0.375

with f1, f2, f3, f4 0.938 0.936 0.936 0.932 0.391 0.389 0.385 0.374

Table 3 Performance on normal –1, 2, 3, 4 of “Full Method” with and without using information
about directivity

Full
method \ normal-

AUROC AUPRC

1 2 3 4 1 2 3 4

Undirected 0.943 0.942 0.942 0.939 0.403 0.404 0.398 0.388

Directed 0.944 0.943 0.942 0.940 0.404 0.405 0.399 0.389
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Table 4 Performance (top: AUROC, bottom: AUPRC) on specific datasets with different methods

Method \ normal- AUROC

lowcon highcon lowcc highcc 3-highrate 4-lownoise

Averaging 0.947 0.943 0.920 0.942 0.959 0.934

Full method 0.955 0.944 0.925 0.946 0.961 0.941

PC 0.782 0.920 0.846 0.897 0.898 0.873

GTE 0.846 0.905 0.848 0.899 0.905 0.879

GENIE3 0.781 0.924 0.879 0.902 0.886 0.890

AUPRC

Averaging 0.320 0.429 0.262 0.478 0.443 0.412

Full method 0.334 0.413 0.260 0.486 0.452 0.432

PC 0.074 0.218 0.082 0.165 0.193 0.135

GTE 0.094 0.211 0.081 0.165 0.210 0.144

GENIE3 0.128 0.273 0.116 0.309 0.256 0.224

Appendix C. On the Selection of the Number of Principal
Components

The (true) network, seen as a matrix, can be decomposed through a singular value
decomposition (SVD) or principal component analysis (PCA), so as to respectively
determine a set of independent linear combinations of the variable (Alter et al. 2000),
or a reduced set of linear combinations combine, which then maximize the explained
variance of the data (Jolliffe 2005). Since SVD and PCA are related, they can be
defined by the same goal: both aim at finding a reduced set of neurons, known as
components, whose activity can explain the rest of the network.

The distribution of component eigen values obtained from PCA and SVD decom-
positions can be studied by sorting them in descending order of magnitude, as illus-
trated in Fig. 3. It can be seen that some component eigen values are zero, implying
that the behaviour of the network could be explained by a subset of neurons because
of the redundancy and relations between the neurons. For all datasets, the eigen value
distribution is exactly the same.

In the context of the challenge, we observe that only 800 components seem to be
necessary and we exploit this when computing partial correlation statistics. There-
fore, the value of the parameter M is immediate and should be clearly set to 800
(=0.8p).

Note that if the true network is not available, similar decomposition analysis could
be carried on the inferred network, or on the data directly.
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(a) PCA (b) SVD

Fig. 3 Explained variance ratio by number of principal components (left) and singular value ratio
by number of principal components (right) for all networks

Table 5 Connectomics
challenge summary

Team name The AAAGV team

Private leaderboard position 1st

Private leaderboard
performance

0.94161

Private leaderboard
performance of the winner

idem

Appendix D. Summary Table

See Table 5.
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