[en] Spaces Snu are metrizable sequence spaces defined by Jaffard in the context of multifractal analysis and signal treatment. From a functional analysis point of view, the study of these spaces points out some topological properties, such as the facts they are locally pseudoconvex in general and locally p-convex in certain cases, Schwartz, and non-nuclear.
In this talk, we focus on two topological invariants, namely the diametral dimension (Bessaga, Mityagin, Pelczynski, Rolewicz) and the property "Omega Bar" (Vogt, Wagner). Firstly, we revisit a result of Aubry and Bastin giving the diametral dimension of locally p-convex spaces Snu and extend it to some non-locally p-convex spaces Snu. Secondly, we explain how these developments can be used to prove that a subclass of spaces Snu (among which the locally p-convex ones) verifes the condition Omega Bar.
Disciplines :
Mathematics
Author, co-author :
Demeulenaere, Loïc ; Université de Liège > Département de mathématique > Analyse - Analyse fonctionnelle - Ondelettes
Language :
English
Title :
Diametral dimension and property Omega Bar for spaces Snu
Publication date :
08 June 2017
Event name :
FNRS Group - Functional Analysis
Event place :
Han-sur-Lesse, Belgium
Event date :
8-9 June, 2017
By request :
Yes
Audience :
International
Funders :
FRIA - Fonds pour la Formation à la Recherche dans l'Industrie et dans l'Agriculture