Ward, P.S., Thompson, C.B., Metabolic reprogramming: a cancer hallmark even warburg did not anticipate. Cancer Cell 21:3 (2012), 297–308.
Maillard, L., Action des acides aminés sur les sucres: formation des mélanoidines par voie méthodique. C.R. Hebd. Seances Acad. Sci. 154 (1912), 66–68.
Rabbani, N., Xue, M., Thornalley, P.J., Methylglyoxal-induced dicarbonyl stress in aging and disease: first steps towards glyoxalase 1-based treatments. Clin. Sci. (Lond.) 130:19 (2016), 1677–1696.
Maessen, D.E., Stehouwer, C.D., Schalkwijk, C.G., The role of methylglyoxal and the glyoxalase system in diabetes and other age-related diseases. Clin. Sci. (Lond.) 128:12 (2015), 839–861.
Verzijl, N., DeGroot, J., Thorpe, S.R., Bank, R.A., Shaw, J.N., Lyons, T.J., Bijlsma, J.W., Lafeber, F.P., Baynes, J.W., TeKoppele, J.M., Effect of collagen turnover on the accumulation of advanced glycation end products. J. Biol. Chem. 275:50 (2000), 39027–39031.
Thornalley, P.J., Langborg, A., Minhas, H.S., Formation of glyoxal, methylglyoxal and 3-deoxyglucosone in the glycation of proteins by glucose. Biochem. J. 344:Pt. 1 (1999), 109–116.
Brownlee, M., Biochemistry and molecular cell biology of diabetic complications. Nature 414:6865 (2001), 813–820.
Shinohara, M., Thornalley, P.J., Giardino, I., Beisswenger, P., Thorpe, S.R., Onorato, J., Brownlee, M., Overexpression of glyoxalase-I in bovine endothelial cells inhibits intracellular advanced glycation endproduct formation and prevents hyperglycemia-induced increases in macromolecular endocytosis. J. Clin. Invest. 101:5 (1998), 1142–1147.
Thornalley, P.J., The glyoxalase system in health and disease. Mol. Aspects Med. 14:4 (1993), 287–371.
Richard, J.P., Mechanism for the formation of methylglyoxal from triosephosphates. Biochem. Soc. Trans. 21:2 (1993), 549–553.
Phillips, S.A., Thornalley, P.J., The formation of methylglyoxal from triose phosphates. Investigation using a specific assay for methylglyoxal. Eur. J. Biochem. FEBS 212:1 (1993), 101–105.
Pompliano, D.L., Peyman, A., Knowles, J.R., Stabilization of a reaction intermediate as a catalytic device: definition of the functional role of the flexible loop in triosephosphate isomerase. Biochemistry 29:13 (1990), 3186–3194.
Reichard, G.A. Jr., Skutches, C.L., Hoeldtke, R.D., Owen, O.E., Acetone metabolism in humans during diabetic ketoacidosis. Diabetes 35:6 (1986), 668–674.
Ray, M., Ray, S., Aminoacetone oxidase from goat liver. Formation of methylglyoxal from aminoacetone. J. Biol. Chem. 262:13 (1987), 5974–5977.
Baynes, J.W., Thorpe, S.R., Glycoxidation and lipoxidation in atherogenesis. Free Radic. Biol. Med. 28:12 (2000), 1708–1716.
Esterbauer, H., Gebicki, J., Puhl, H., Jurgens, G., The role of lipid peroxidation and antioxidants in oxidative modification of LDL. Free Radic. Biol. Med. 13:4 (1992), 341–390.
Ahmed, N., Argirov, O.K., Minhas, H.S., Cordeiro, C.A., Thornalley, P.J., Assay of advanced glycation endproducts (AGEs): surveying AGEs by chromatographic assay with derivatization by 6-aminoquinolyl-N-hydroxysuccinimidyl-carbamate and application to Nepsilon-carboxymethyl-lysine- and Nepsilon-(1-carboxyethyl)lysine-modified albumin. Biochem. J. 364:Pt. 1 (2002), 1–14.
Ahmed, N., Thornalley, P.J., Chromatographic assay of glycation adducts in human serum albumin glycated in vitro by derivatization with 6-aminoquinolyl-N-hydroxysuccinimidyl-carbamate and intrinsic fluorescence. Biochem. J. 364:Pt. 1 (2002), 15–24.
Westwood, M.E., Thornalley, P.J., Molecular characteristics of methylglyoxal-modified bovine and human serum albumins. Comparison with glucose-derived advanced glycation endproduct-modified serum albumins. J. Protein Chem. 14:5 (1995), 359–372.
Shipanova, I.N., Glomb, M.A., Nagaraj, R.H., Protein modification by methylglyoxal: chemical nature and synthetic mechanism of a major fluorescent adduct. Arch. Biochem. Biophys. 344:1 (1997), 29–36.
Oya, T., Hattori, N., Mizuno, Y., Miyata, S., Maeda, S., Osawa, T., Uchida, K., Methylglyoxal modification of protein. Chemical and immunochemical characterization of methylglyoxal-arginine adducts. J. Biol. Chem. 274:26 (1999), 18492–18502.
Ahmed, M.U., Brinkmann Frye, E., Degenhardt, T.P., Thorpe, S.R., Baynes, J.W., a product of the chemical modification of proteins by methylglyoxal, increases with age in human lens proteins. Biochem. J. 324:Pt. 2 (1997), 565–570.
Brinkmann, E., Wells-Knecht, K.J., Thorpe, S.R., Baynes, J.W., Characterization of an imidazolium compound formed by reaction of methylglyoxal and Nα-hippuryllysine. J. Chem. Soc. Perkin Trans. 1 (1995), 2817–2818.
Lederer, M.O., Klaiber, R.G., Cross-linking of proteins by Maillard processes: characterization and detection of lysine-arginine cross-links derived from glyoxal and methylglyoxal. Bioorg. Med. Chem. 7:11 (1999), 2499–2507.
Xue, J., Ray, R., Singer, D., Bohme, D., Burz, D.S., Rai, V., Hoffmann, R., Shekhtman, A., The receptor for advanced glycation end products (RAGE) specifically recognizes methylglyoxal-derived AGEs. Biochemistry 53:20 (2014), 3327–3335.
Piperi, C., Adamopoulos, C., Papavassiliou, A.G., Potential of glycative stress targeting for cancer prevention. Cancer Lett. 390 (2017), 153–159.
Nagaraj, R.H., Oya-Ito, T., Bhat, M., Liu, B., Dicarbonyl stress and apoptosis of vascular cells: prevention by alphaB-crystallin. Ann. N. Y. Acad. Sci. 1043 (2005), 158–165.
Chan, W.H., Wu, H.J., Methylglyoxal and high glucose co-treatment induces apoptosis or necrosis in human umbilical vein endothelial cells. J. Cell. Biochem. 103:4 (2008), 1144–1157.
Rosca, M.G., Monnier, V.M., Szweda, L.I., Weiss, M.F., Alterations in renal mitochondrial respiration in response to the reactive oxoaldehyde methylglyoxal. Am. J. Physiol. Renal Physiol. 283:1 (2002), F52–F59.
Wu, L., Juurlink, B.H., Increased methylglyoxal and oxidative stress in hypertensive rat vascular smooth muscle cells. Hypertension 39:3 (2002), 809–814.
Phalitakul, S., Okada, M., Hara, Y., Yamawaki, H., Vaspin prevents methylglyoxal-induced apoptosis in human vascular endothelial cells by inhibiting reactive oxygen species generation. Acta Physiol. (Oxf.) 209:3 (2013), 212–219.
Chang, T., Wang, R., Wu, L., Methylglyoxal-induced nitric oxide and peroxynitrite production in vascular smooth muscle cells. FreeRadical Biol. Med. 38:2 (2005), 286–293.
Wang, H., Meng, Q.H., Chang, T., Wu, L., Fructose-induced peroxynitrite production is mediated by methylglyoxal in vascular smooth muscle cells. Life Sci. 79:26 (2006), 2448–2454.
Chang, T., Untereiner, A., Liu, J., Wu, L., Interaction of methylglyoxal and hydrogen sulfide in rat vascular smooth muscle cells. Antioxid. Redox Signal. 12:9 (2010), 1093–1100.
Yao, D., Taguchi, T., Matsumura, T., Pestell, R., Edelstein, D., Giardino, I., Suske, G., Rabbani, N., Thornalley, P.J., Sarthy, V.P., Hammes, H.P., Brownlee, M., High glucose increases angiopoietin-2 transcription in microvascular endothelial cells through methylglyoxal modification of mSin3A. J. Biol. Chem. 282:42 (2007), 31038–31045.
Thangarajah, H., Yao, D., Chang, E.I., Shi, Y., Jazayeri, L., Vial, I.N., Galiano, R.D., Du, X.L., Grogan, R., Galvez, M.G., Januszyk, M., Brownlee, M., Gurtner, G.C., The molecular basis for impaired hypoxia-induced VEGF expression in diabetic tissues. Proc. Natl. Acad. Sci. U. S. A. 106:32 (2009), 13505–13510.
Vaca, C.E., Fang, J.L., Conradi, M., Hou, S.M., Development of a 32P-postlabelling method for the analysis of 2′-deoxyguanosine-3′-monophosphate and DNA adducts of methylglyoxal. Carcinogenesis 15:9 (1994), 1887–1894.
Schneider, M., Thoss, G., Hubner-Parajsz, C., Kientsch-Engel, R., Stahl, P., Pischetsrieder, M., Determination of glycated nucleobases in human urine by a new monoclonal antibody specific for N2-carboxyethyl-2'-deoxyguanosine. Chem. Res. Toxicol. 17:10 (2004), 1385–1390.
Ahmad, S., Moinuddin, K., Dixit, U., Shahab, K., Alam, A., Genotoxicity and immunogenicity of DNA-advanced glycation end products formed by methylglyoxal and lysine in presence of Cu2+. Biochem. Biophys. Res. Commun. 407:3 (2011), 568–574.
Synold, T., Xi, B., Wuenschell, G.E., Tamae, D., Figarola, J.L., Rahbar, S., Termini, J., Advanced glycation end products of DNA: quantification of N2-(1-carboxyethyl)-2′-deoxyguanosine in biological samples by liquid chromatography electrospray ionization tandem mass spectrometry. Chem. Res. Toxicol. 21:11 (2008), 2148–2155.
Ashraf, J.M., Ahmad, S., Choi, I., Ahmad, N., Farhan, M., Tatyana, G., Shahab, U., Recent advances in detection of AGEs: immunochemical, bioanalytical and biochemical approaches. IUBMB Life 67:12 (2015), 897–913.
Thornalley, P.J., Rabbani, N., Glyoxalase in tumourigenesis and multidrug resistance. Semin. Cell Dev. Biol. 22:3 (2011), 318–325.
Murata-Kamiya, N., Kamiya, H., Kaji, H., Kasai, H., Methylglyoxal induces G:C to C:G and G:C to T:A transversions in the supF gene on a shuttle vector plasmid replicated in mammalian cells. Mutat. Res. 468:2 (2000), 173–182.
Tu, C.Y., Chen, Y.F., Lii, C.K., Wang, T.S., Methylglyoxal induces DNA crosslinks in ECV304 cells via a reactive oxygen species-independent protein carbonylation pathway. Toxicol. In Vitro 27:4 (2013), 1211–1219.
Petrova, K.V., Millsap, A.D., Stec, D.F., Rizzo, C.J., Characterization of the deoxyguanosine-lysine cross-link of methylglyoxal. Chem. Res. Toxicol. 27:6 (2014), 1019–1029.
Mir, A.R., uddin, M., Alam, K., Ali, A., Methylglyoxal mediated conformational changes in histone H2A-generation of carboxyethylated advanced glycation end products. Int. J. Biol. Macromol. 69 (2014), 260–266.
Jyoti, A.R., Mir, S., Habib, S.S., Siddiqui, A., Ali, Moinuddin, Neo-epitopes on methylglyoxal modified human serum albumin lead to aggressive autoimmune response in diabetes. Int. J. Biol. Macromol. 86 (2016), 799–809.
Ahmad, M.I., Ahmad, S., Moinuddin, Preferential recognition of methylglyoxal-modified calf thymus DNA by circulating antibodies in cancer patients. Indian J. Biochem. Biophys. 48:4 (2011), 290–296.
Rabbani, N., Thornalley, P.J., Methylglyoxal, glyoxalase 1 and the dicarbonyl proteome. Amino Acids 42:4 (2012), 1133–1142.
Wang, X., Chen, M., Zhou, J., Zhang, X., HSP and 90, anti-apoptotic proteins, in clinical cancer therapy (Review). Int. J. Oncol. 45:1 (2014), 18–30.
van Heijst, J.W., Niessen, H.W., Musters, R.J., van Hinsbergh, V.W., Hoekman, K., Schalkwijk, C.G., Argpyrimidine-modified Heat shock protein 27 in human non-small cell lung cancer: a possible mechanism for evasion of apoptosis. Cancer Lett. 241:2 (2006), 309–319.
Oya-Ito, T., Naito, Y., Takagi, T., Handa, O., Matsui, H., Yamada, M., Shima, K., Yoshikawa, T., Heat-shock protein 27 (Hsp27) as a target of methylglyoxal in gastrointestinal cancer. Biochim. Biophys. Acta 1812:7 (2011), 769–781.
Bair, W.B. 3rd, Cabello, C.M., Uchida, K., Bause, A.S., Wondrak, G.T., GLO1 overexpression in human malignant melanoma. Melanoma Res. 20:2 (2010), 85–96.
Sakamoto, H., Mashima, T., Yamamoto, K., Tsuruo, T., Modulation of heat-shock protein 27 (Hsp27) anti-apoptotic activity by methylglyoxal modification. J. Biol. Chem. 277:48 (2002), 45770–45775.
Nokin, M.J., Durieux, F., Peixoto, P., Chiavarina, B., Peulen, O., Blomme, A., Turtoi, A., Costanza, B., Smargiasso, N., Baiwir, D., Scheijen, J.L., Schalkwijk, C.G., Leenders, J., De Tullio, P., Bianchi, E., Thiry, M., Uchida, K., Spiegel, D.A., Cochrane, J.R., Hutton, C.A., De Pauw, E., Delvenne, P., Belpomme, D., Castronovo, V., Bellahcene, A., Methylglyoxal, a glycolysis side-product, induces Hsp90 glycation and YAP-mediated tumor growth and metastasis. eLife, 5, 2016.
Thornalley, P.J., Glyoxalase I-structure, function and a critical role in the enzymatic defence against glycation. Biochem. Soc. Trans. 31:Pt. 6 (2003), 1343–1348.
de Hemptinne, V., Rondas, D., Toepoel, M., Vancompernolle, K., Phosphorylation on Thr-106 and NO-modification of glyoxalase I suppress the TNF-induced transcriptional activity of NF-kappaB. Mol. Cell. Biochem. 325:1–2 (2009), 169–178.
Van Herreweghe, F., Mao, J., Chaplen, F.W., Grooten, J., Gevaert, K., Vandekerckhove, J., Vancompernolle, K., Tumor necrosis factor-induced modulation of glyoxalase I activities through phosphorylation by PKA results in cell death and is accompanied by the formation of a specific methylglyoxal-derived AGE. Proc. Natl. Acad. Sci. U. S. A. 99:2 (2002), 949–954.
de Hemptinne, V., Rondas, D., Vandekerckhove, J., Vancompernolle, K., Tumour necrosis factor induces phosphorylation primarily of the nitric-oxide-responsive form of glyoxalase I. Biochem. J. 407:1 (2007), 121–128.
Birkenmeier, G., Stegemann, C., Hoffmann, R., Gunther, R., Huse, K., Birkemeyer, C., Posttranslational modification of human glyoxalase 1 indicates redox-dependent regulation. PLoS One, 5(4), 2010, e10399.
Vander Jagt, D.L., Robinson, B., Taylor, K.K., Hunsaker, L.A., Reduction of trioses by NADPH-dependent aldo-keto reductases. Aldose reductase, methylglyoxal, and diabetic complications. J. Biol. Chem. 267:7 (1992), 4364–4369.
Yoshida, A., Ikawa, M., Hsu, L.C., Tani, K., Molecular abnormality and cDNA cloning of human aldehyde dehydrogenases. Alcohol 2:1 (1985), 103–106.
Kurys, G., Ambroziak, W., Pietruszko, R., Human aldehyde dehydrogenase. Purification and characterization of a third isozyme with low Km for gamma-aminobutyraldehyde. J. Biol. Chem. 264:8 (1989), 4715–4721.
Nemet, I., Varga-Defterdarovic, L., Turk, Z., Methylglyoxal in food and living organisms. Mol. Nutr. Food Res. 50:12 (2006), 1105–1117.
McKinney, G.R., Rundles, R.W., Lactate formation and glyoxalase activity in normal and leukemic human leukocytes in vitro. Cancer Res. 16:1 (1956), 67–69.
Antognelli, C., Palumbo, I., Aristei, C., Talesa, V.N., Glyoxalase I inhibition induces apoptosis in irradiated MCF-7 cells via a novel mechanism involving Hsp27, p53 and NF-kappaB. Br. J. Cancer 111:2 (2014), 395–406.
Guo, Y., Zhang, Y., Yang, X., Lu, P., Yan, X., Xiao, F., Zhou, H., Wen, C., Shi, M., Lu, J., Meng, Q.H., Effects of methylglyoxal and glyoxalase I inhibition on breast cancer cells proliferation, invasion, and apoptosis through modulation of MAPKs, MMP9, and Bcl-2. Cancer Biol. Ther. 17:2 (2016), 169–180.
Hutschenreuther, A., Bigl, M., Hemdan, N.Y., Debebe, T., Gaunitz, F., Birkenmeier, G., Modulation of GLO1 expression affects malignant properties of cells. Int. J. Mol. Sci., 17(12), 2016.
Zhang, S., Liang, X., Zheng, X., Huang, H., Chen, X., Wu, K., Wang, B., Ma, S., Glo1 genetic amplification as a potential therapeutic target in hepatocellular carcinoma. Int. J. Clin. Exp. Pathol. 7:5 (2014), 2079–2090.
Sakamoto, H., Mashima, T., Sato, S., Hashimoto, Y., Yamori, T., Tsuruo, T., Selective activation of apoptosis program by S-p-bromobenzylglutathione cyclopentyl diester in glyoxalase I-overexpressing human lung cancer cells. Clin. Cancer Res. 7:8 (2001), 2513–2518.
Zender, L., Xue, W., Zuber, J., Semighini, C.P., Krasnitz, A., Ma, B., Zender, P., Kubicka, S., Luk, J.M., Schirmacher, P., McCombie, W.R., Wigler, M., Hicks, J., Hannon, G.J., Powers, S., Lowe, S.W., An oncogenomics-based in vivo RNAi screen identifies tumor suppressors in liver cancer. Cell 135:5 (2008), 852–864.
Sharaf, H., Matou-Nasri, S., Wang, Q., Rabhan, Z., Al-Eidi, H., Al Abdulrahman, A., Ahmed, N., Advanced glycation endproducts increase proliferation, migration and invasion of the breast cancer cell line MDA-MB-231. Biochim. Biophys. Acta 1852:3 (2015), 429–441.
Chiavarina, B., Nokin, M.J., Bellier, J., Durieux, F., Bletard, N., Sherer, F., Lovinfosse, P., Peulen, O., Verset, L., Dehon, R., Demetter, P., Turtoi, A., Uchida, K., Goldman, S., Hustinx, R., Delvenne, P., Castronovo, V., Bellahcene, A., Methylglyoxal-mediated stress correlates with high metabolic activity and promotes tumor growth in colorectal cancer. Int. J. Mol. Sci., 18(1), 2017.
Santarius, T., Shipley, J., Brewer, D., Stratton, M.R., Cooper, C.S., A census of amplified and overexpressed human cancer genes. Nat. Rev. Cancer 10:1 (2010), 59–64.
Santarius, T., Bignell, G.R., Greenman, C.D., Widaa, S., Chen, L., Mahoney, C.L., Butler, A., Edkins, S., Waris, S., Thornalley, P.J., Futreal, P.A., Stratton, M.R., GLO1-A novel amplified gene in human cancer. Genes Chromosomes Cancer 49:8 (2010), 711–725.
Andre, F., Job, B., Dessen, P., Tordai, A., Michiels, S., Liedtke, C., Richon, C., Yan, K., Wang, B., Vassal, G., Delaloge, S., Hortobagyi, G.N., Symmans, W.F., Lazar, V., Pusztai, L., Molecular characterization of breast cancer with high-resolution oligonucleotide comparative genomic hybridization array. Clin. Cancer Res. 15:2 (2009), 441–451.
Chiavarina, B., Nokin, M.J., Durieux, F., Bianchi, E., Turtoi, A., Peulen, O., Peixoto, P., Irigaray, P., Uchida, K., Belpomme, D., Delvenne, P., Castronovo, V., Bellahcene, A., Triple negative tumors accumulate significantly less methylglyoxal specific adducts than other human breast cancer subtypes. Oncotarget 5:14 (2014), 5472–5482.
Xue, M., Rabbani, N., Momiji, H., Imbasi, P., Anwar, M.M., Kitteringham, N., Park, B.K., Souma, T., Moriguchi, T., Yamamoto, M., Thornalley, P.J., Transcriptional control of glyoxalase 1 by Nrf2 provides a stress-responsive defence against dicarbonyl glycation. Biochem. J. 443:1 (2012), 213–222.
Ranganathan, S., Ciaccio, P.J., Walsh, E.S., Tew, K.D., Genomic sequence of human glyoxalase-I: analysis of promoter activity and its regulation. Gene 240:1 (1999), 149–155.
Menegon, S., Columbano, A., Giordano, S., The dual roles of NRF2 in cancer. Trends Mol. Med. 22:7 (2016), 578–593.
Nishimoto, S., Koike, S., Inoue, N., Suzuki, T., Ogasawara, Y., Activation of Nrf2 attenuates carbonyl stress induced by methylglyoxal in human neuroblastoma cells: increase in GSH levels is a critical event for the detoxification mechanism. Biochem. Biophys. Res. Commun. 483:2 (2017), 874–879.
Morgenstern, J., Fleming, T., Schumacher, D., Eckstein, V., reichel, M.F., Herzig, S., Nawroth, P., Loss of glyoxalase 1 induces compensatory mechanism to achieve dicarbonyl detoxification in mammalian Schwann cells. J. Biol. Chem. 292:December (8) (2016), 3224–3238.
Vander Jagt, D.L., Hunsaker, L.A., Methylglyoxal metabolism and diabetic complications: roles of aldose reductase glyoxalase-I, betaine aldehyde dehydrogenase and 2-oxoaldehyde dehydrogenase. Chem. Biol. Interact. 143–144 (2003), 341–351.
Lou, H., Du, S., Ji, Q., Stolz, A., Induction of AKR1C2 by phase II inducers: identification of a distal consensus antioxidant response element regulated by NRF2. Mol. Pharmacol. 69:5 (2006), 1662–1672.
Jung, K.A., Choi, B.H., Nam, C.W., Song, M., Kim, S.T., Lee, J.Y., Kwak, M.K., Identification of aldo-keto reductases as NRF2-target marker genes in human cells. Toxicol. Lett. 218:1 (2013), 39–49.
MacLeod, A.K., Acosta-Jimenez, L., Coates, P.J., McMahon, M., Carey, F.A., Honda, T., Henderson, C.J., Wolf, C.R., Aldo-keto reductases are biomarkers of NRF2 activity and are co-ordinately overexpressed in non-small cell lung cancer. Br. J. Cancer 115:12 (2016), 1530–1539.
Heiss, E.H., Schachner, D., Zimmermann, K., Dirsch, V.M., Glucose availability is a decisive factor for Nrf2-mediated gene expression. Redox Biol. 1 (2013), 359–365.
Rizner, T.L., Penning, T.M., Role of aldo-keto reductase family 1 (AKR1) enzymes in human steroid metabolism. Steroids 79 (2014), 49–63.
Rulli, A., Carli, L., Romani, R., Baroni, T., Giovannini, E., Rosi, G., Talesa, V., Expression of glyoxalase I and II in normal and breast cancer tissues. Breast Cancer Res. Treat. 66:1 (2001), 67–72.
Davidson, S.D., Cherry, J.P., Choudhury, M.S., Tazaki, H., Mallouh, C., Konno, S., Glyoxalase I activity in human prostate cancer: a potential marker and importance in chemotherapy. J. Urol. 161:2 (1999), 690–691.
Davidson, S.D., Milanesa, D.M., Mallouh, C., Choudhury, M.S., Tazaki, H., Konno, S., A possible regulatory role of glyoxalase I in cell viability of human prostate cancer. Urol. Res. 30:2 (2002), 116–121.
Rulli, A., Antognelli, C., Prezzi, E., Baldracchini, F., Piva, F., Giovannini, E., Talesa, V., A possible regulatory role of 17beta-estradiol and tamoxifen on glyoxalase I and glyoxalase II genes expression in MCF7 and BT20 human breast cancer cells. Breast Cancer Res. Treat. 96:2 (2006), 187–196.
Antognelli, C., Del Buono, C., Baldracchini, F., Talesa, V., Cottini, E., Brancadoro, C., Zucchi, A., Mearini, E., Alteration of glyoxalase genes expression in response to testosterone in LNCaP and PC3 human prostate cancer cells. Cancer Biol. Ther. 6:12 (2007), 1880–1888.
Helgager, J., Li, J., Lubensky, I.A., Lonser, R., Zhuang, Z., Troglitazone reduces glyoxalase I protein expression in glioma and potentiates the effects of chemotherapeutic agents. J. Oncol., 2010, 2010, 373491.
Ruggiero-Lopez, D., Lecomte, M., Moinet, G., Patereau, G., Lagarde, M., Wiernsperger, N., Reaction of metformin with dicarbonyl compounds. Possible implication in the inhibition of advanced glycation end product formation. Biochem. Pharmacol. 58:11 (1999), 1765–1773.
Gotlieb, W.H., Saumet, J., Beauchamp, M.C., Gu, J., Lau, S., Pollak, M.N., Bruchim, I., In vitro metformin anti-neoplastic activity in epithelial ovarian cancer. Gynecol. Oncol. 110:2 (2008), 246–250.
Ben Sahra, I., Laurent, K., Loubat, A., Giorgetti-Peraldi, S., Colosetti, P., Auberger, P., Tanti, J.F., Le Marchand-Brustel, Y., Bost, F., The antidiabetic drug metformin exerts an antitumoral effect in vitro and in vivo through a decrease of cyclin D1 level. Oncogene 27:25 (2008), 3576–3586.
Zhuang, Y., Miskimins, W.K., Cell cycle arrest in Metformin treated breast cancer cells involves activation of AMPK, downregulation of cyclin D1, and requires p27Kip1 or p21Cip1. J. Mol. Signal., 3, 2008, 18.
Alimova, I.N., Liu, B., Fan, Z., Edgerton, S.M., Dillon, T., Lind, S.E., Thor, A.D., Metformin inhibits breast cancer cell growth, colony formation and induces cell cycle arrest in vitro. ABBV Cell Cycle 8:6 (2009), 909–915.
Wang, L.W., Li, Z.S., Zou, D.W., Jin, Z.D., Gao, J., Xu, G.M., Metformin induces apoptosis of pancreatic cancer cells. World J. Gastroenterol. 14:47 (2008), 7192–7198.
Buzzai, M., Jones, R.G., Amaravadi, R.K., Lum, J.J., DeBerardinis, R.J., Zhao, F., Viollet, B., Thompson, C.B., Systemic treatment with the antidiabetic drug metformin selectively impairs p53-deficient tumor cell growth. Cancer Res. 67:14 (2007), 6745–6752.
Hirsch, H.A., Iliopoulos, D., Tsichlis, P.N., Struhl, K., Metformin selectively targets cancer stem cells, and acts together with chemotherapy to block tumor growth and prolong remission. Cancer Res. 69:19 (2009), 7507–7511.
Liu, B., Fan, Z., Edgerton, S.M., Deng, X.S., Alimova, I.N., Lind, S.E., Thor, A.D., Metformin induces unique biological and molecular responses in triple negative breast cancer cells. Cell Cycle 8:13 (2009), 2031–2040.
Kisfalvi, K., Eibl, G., Sinnett-Smith, J., Rozengurt, E., Metformin disrupts crosstalk between G protein-coupled receptor and insulin receptor signaling systems and inhibits pancreatic cancer growth. Cancer Res. 69:16 (2009), 6539–6545.
Schneider, M.B., Matsuzaki, H., Haorah, J., Ulrich, A., Standop, J., Ding, X.Z., Adrian, T.E., Pour, P.M., Prevention of pancreatic cancer induction in hamsters by metformin. Gastroenterology 120:5 (2001), 1263–1270.
Dong, L., Zhou, Q., Zhang, Z., Zhu, Y., Duan, T., Feng, Y., Metformin sensitizes endometrial cancer cells to chemotherapy by repressing glyoxalase I expression. J. Obstetrics Gynaecol. Res. 38:8 (2012), 1077–1085.
Chuengsamarn, S., Rattanamongkolgul, S., Luechapudiporn, R., Phisalaphong, C., Jirawatnotai, S., Curcumin extract for prevention of type 2 diabetes. Diabetes Care 35:11 (2012), 2121–2127.
Santel, T., Pflug, G., Hemdan, N.Y., Schafer, A., Hollenbach, M., Buchold, M., Hintersdorf, A., Lindner, I., Otto, A., Bigl, M., Oerlecke, I., Hutschenreuther, A., Sack, U., Huse, K., Groth, M., Birkemeyer, C., Schellenberger, W., Gebhardt, R., Platzer, M., Weiss, T., Vijayalakshmi, M.A., Kruger, M., Birkenmeier, G., Curcumin inhibits glyoxalase 1: a possible link to its anti-inflammatory and anti-tumor activity. PLoS One, 3(10), 2008, e3508.
Hu, T.Y., Liu, C.L., Chyau, C.C., Hu, M.L., Trapping of methylglyoxal by curcumin in cell-free systems and in human umbilical vein endothelial cells. J. Agric. Food Chem. 60:33 (2012), 8190–8196.
Egyud, L.G., Szent-Gyorgyi, A., Cancerostatic action of methylglyoxal. Science, 160(3832), 1968, 1140.
Lee, H.J., Howell, S.K., Sanford, R.J., Beisswenger, P.J., Methylglyoxal can modify GAPDH activity and structure. Ann. N. Y. Acad. Sci. 1043 (2005), 135–145.
Chakrabarti, A., Talukdar, D., Pal, A., Ray, M., Immunomodulation of macrophages by methylglyoxal conjugated with chitosan nanoparticles against Sarcoma-180 tumor in mice. Cell. Immunol. 287:1 (2014), 27–35.
Lin, J.A., Wu, C.H., Lu, C.C., Hsia, S.M., Yen, G.C., Glycative stress from advanced glycation end products (AGEs) and dicarbonyls: an emerging biological factor in cancer onset and progression. Mol. Nutr. Food Res. 60:8 (2016), 1850–1864.
Amicarelli, F., Colafarina, S., Cattani, F., Cimini, A., Di Ilio, C., Ceru, M.P., Miranda, M., Scavenging system efficiency is crucial for cell resistance to ROS-mediated methylglyoxal injury. Free Radical Biol. Med. 35:8 (2003), 856–871.
Milanesa, D.M., Choudhury, M.S., Mallouh, C., Tazaki, H., Konno, S., Methylglyoxal-induced apoptosis in human prostate carcinoma: potential modality for prostate cancer treatment. Eur. Urol. 37:6 (2000), 728–734.
Ghosh, A., Bera, S., Ray, S., Banerjee, T., Ray, M., Methylglyoxal induces mitochondria-dependent apoptosis in sarcoma. Biochemistry (Mosc.) 76:10 (2011), 1164–1171.
Thornalley, P.J., Waris, S., Fleming, T., Santarius, T., Larkin, S.J., Winklhofer-Roob, B.M., Stratton, M.R., Rabbani, N., Imidazopurinones are markers of physiological genomic damage linked to DNA instability and glyoxalase 1-associated tumour multidrug resistance. Nucleic Acids Res. 38:16 (2010), 5432–5442.
Kang, Y., Edwards, L.G., Thornalley, P.J., Effect of methylglyoxal on human leukaemia 60 cell growth: modification of DNA G1 growth arrest and induction of apoptosis. Leuk. Res. 20:5 (1996), 397–405.
Antognelli, C., Mezzasoma, L., Fettucciari, K., Mearini, E., Talesa, V.N., Role of glyoxalase I in the proliferation and apoptosis control of human LNCaP and PC3 prostate cancer cells. Prostate 73:2 (2013), 121–132.
Antognelli, C., Mezzasoma, L., Fettucciari, K., Talesa, V.N., A novel mechanism of methylglyoxal cytotoxicity in prostate cancer cells. Int. J. Biochem. Cell Biol. 45:4 (2013), 836–844.
Taniguchi, H., Horinaka, M., Yoshida, T., Yano, K., Goda, A.E., Yasuda, S., Wakada, M., Sakai, T., Targeting the glyoxalase pathway enhances TRAIL efficacy in cancer cells by downregulating the expression of antiapoptotic molecules. Mol. Cancer Ther. 11:10 (2012), 2294–2300.
Speer, O., Morkunaite-Haimi, S., Liobikas, J., Franck, M., Hensbo, L., Linder, M.D., Kinnunen, P.K., Wallimann, T., Eriksson, O., Rapid suppression of mitochondrial permeability transition by methylglyoxal. Role of reversible arginine modification. J. Biol. Chem. 278:37 (2003), 34757–34763.
Loarca, L., Sassi-Gaha, S., Artlett, C.M., Two alpha-dicarbonyls downregulate migration, invasion, and adhesion of liver cancer cells in a p53-dependent manner. Dig. Liver Dis. 45:11 (2013), 938–946.
He, T., Zhou, H., Li, C., Chen, Y., Chen, X., Li, C., Mao, J., Lyu, J., Meng, Q.H., Methylglyoxal suppresses human colon cancer cell lines and tumor growth in a mouse model by impairing glycolytic metabolism of cancer cells associated with down-regulation of c-Myc expression. Cancer Biol. Ther. 17:9 (2016), 955–965.
Hu, X., Yang, X., He, Q., Chen, Q., Yu, L., Glyoxalase 1 is up-regulated in hepatocellular carcinoma and is essential for HCC cell proliferation. Biotechnol. Lett. 36:2 (2014), 257–263.
Hosoda, F., Arai, Y., Okada, N., Shimizu, H., Miyamoto, M., Kitagawa, N., Katai, H., Taniguchi, H., Yanagihara, K., Imoto, I., Inazawa, J., Ohki, M., Shibata, T., Integrated genomic and functional analyses reveal glyoxalase I as a novel metabolic oncogene in human gastric cancer. Oncogene 34:9 (2015), 1196–1206.
Ranganathan, S., Walsh, E.S., Tew, K.D., Glyoxalase I in detoxification: studies using a glyoxalase I transfectant cell line. Biochem. J. 309:Pt. 1 (1995), 127–131.
Sakamoto, H., Mashima, T., Kizaki, A., Dan, S., Hashimoto, Y., Naito, M., Tsuruo, T., Glyoxalase I is involved in resistance of human leukemia cells to antitumor agent-induced apoptosis. Blood 95:10 (2000), 3214–3218.
Shen, Y., Yang, J., Li, J., Shi, X., Ouyang, L., Tian, Y., Lu, J., Carnosine inhibits the proliferation of human gastric cancer SGC-7901 cells through both of the mitochondrial respiration and glycolysis pathways. PLoS One, 9(8), 2014, e104632.
Giovannucci, E., Harlan, D.M., Archer, M.C., Bergenstal, R.M., Gapstur, S.M., Habel, L.A., Pollak, M., Regensteiner, J.G., Yee, D., Diabetes and cancer: a consensus report. Diabetes Care 33:7 (2010), 1674–1685.
Huminiecki, L., Horbanczuk, J., Atanasov, A.G., The functional genomic studies of curcumin. Semin. Cancer Biol., 2017 April 6, pii: S1044-579X(17)30086-X.
Pernicova, I., Korbonits, M., Metformin–mode of action and clinical implications for diabetes and cancer. Nat. Rev. Endocrinol. 10:3 (2014), 143–156.
Sullivan, L.B., Gui, D.Y., Vander Heiden, M.G., Altered metabolite levels in cancer: implications for tumour biology and cancer therapy. Nat. Rev. Cancer 16:11 (2016), 680–693.
Liberti, M.V., Locasale, J.W., The warburg effect: how does it benefit cancer cells?. Trends Biochem. Sci. 41:3 (2016), 211–218.
Koppenol, W.H., Bounds, P.L., Dang, C.V., Otto Warburg's contributions to current concepts of cancer metabolism. Nat. Rev. Cancer 11:5 (2011), 325–337.
Ryu, T.Y., Park, J., Scherer, P.E., Hyperglycemia as a risk factor for cancer progression. Diabetes Metab. J. 38:5 (2014), 330–336.
Xu, C.X., Zhu, H.H., Zhu, Y.M., Diabetes, cancer., Associations, mechanisms, and implications for medical practice. World J. Diabetes 5:3 (2014), 372–380.
Nakayama, K., Nakayama, M., Iwabuchi, M., Terawaki, H., Sato, T., Kohno, M., Ito, S., Plasma alpha-oxoaldehyde levels in diabetic and nondiabetic chronic kidney disease patients. Am. J. Nephrol. 28:6 (2008), 871–878.
Han, Y., Randell, E., Vasdev, S., Gill, V., Curran, M., Newhook, L.A., Grant, M., Hagerty, D., Schneider, C., Plasma advanced glycation endproduct, methylglyoxal-derived hydroimidazolone is elevated in young, complication-free patients with Type 1 diabetes. Clin. Biochem. 42:7–8 (2009), 562–569.
Bento, C.F., Fernandes, R., Ramalho, J., Marques, C., Shang, F., Taylor, A., Pereira, P., The chaperone-dependent ubiquitin ligase CHIP targets HIF-1alpha for degradation in the presence of methylglyoxal. PLoS One, 5(11), 2010, e15062.
Lin, C.C., Chan, C.M., Huang, Y.P., Hsu, S.H., Huang, C.L., Tsai, S.J., Methylglyoxal activates NF-kappaB nuclear translocation and induces COX-2 expression via a p38-dependent pathway in synovial cells. Life Sci. 149 (2016), 25–33.
Palsamy, P., Bidasee, K.R., Ayaki, M., Augusteyn, R.C., Chan, J.Y., Shinohara, T., Methylglyoxal induces endoplasmic reticulum stress and DNA demethylation in the Keap1 promoter of human lens epithelial cells and age-related cataracts. Free Radical Biol. Med. 72 (2014), 134–148.
Quinn, B.J., Kitagawa, H., Memmott, R.M., Gills, J.J., Dennis, P.A., Repositioning metformin for cancer prevention and treatment. ABBV Trends Endocrinol. Metab. 24:9 (2013), 469–480.
Mearini, E., Romani, R., Mearini, L., Antognelli, C., Zucchi, A., Baroni, T., Porena, M., Talesa, V.N., Differing expression of enzymes of the glyoxalase system in superficial and invasive bladder carcinomas. Eur. J. Cancer 38:14 (2002), 1946–1950.
Fonseca-Sanchez, M.A., Rodriguez Cuevas, S., Mendoza-Hernandez, G., Bautista-Pina, V., Arechaga Ocampo, E., Hidalgo Miranda, A., Quintanar Jurado, V., Marchat, L.A., Alvarez-Sanchez, E., Perez Plasencia, C., Lopez-Camarillo, C., Breast cancer proteomics reveals a positive correlation between glyoxalase 1 expression and high tumor grade. Int. J. Oncol. 41:2 (2012), 670–680.
Ranganathan, S., Tew, K.D., Analysis of glyoxalase-I from normal and tumor tissue from human colon. Biochim. Biophys. Acta 1182:3 (1993), 311–316.
Wang, Y., Kuramitsu, Y., Ueno, T., Suzuki, N., Yoshino, S., Iizuka, N., Akada, J., Kitagawa, T., Oka, M., Nakamura, K., Glyoxalase, I., (GLO1) is up-regulated in pancreatic cancerous tissues compared with related non-cancerous tissues. Anticancer Res. 32:8 (2012), 3219–3222.
Romanuik, T.L., Ueda, T., Le, N., Haile, S., Yong, T.M., Thomson, T., Vessella, R.L., Sadar, M.D., Novel biomarkers for prostate cancer including noncoding transcripts. Am. J. Pathol. 175:6 (2009), 2264–2276.
Baunacke, M., Horn, L.C., Trettner, S., Engel, K.M., Hemdan, N.Y., Wiechmann, V., Stolzenburg, J.U., Bigl, M., Birkenmeier, G., Exploring glyoxalase 1 expression in prostate cancer tissues: targeting the enzyme by ethyl pyruvate defangs some malignancy-associated properties. Prostate 74:1 (2014), 48–60.
Zhang, D., Tai, L.K., Wong, L.L., Chiu, L.L., Sethi, S.K., Koay, E.S., Proteomic study reveals that proteins involved in metabolic and detoxification pathways are highly expressed in HER-2/neu-positive breast cancer. Mol. Cell. Proteomics: MCP 4:11 (2005), 1686–1696.