scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.
Bibliography
de Villiers A., Kalili M., Malan M., Roodman J. Improving HPLC separations of polyphenols. LC-GC Eur. 2010, 23:466-478.
Jandera P. Can theory of gradient liquid chromatography be useful in solving practical problems?. J. Chromatogr. A 2006, 1126:195-218.
Dolan J.W. Selectivity in reversed-phase LC separations (Part 1): Solvent-type selectivity. LC-GC Eur. 2010, 23:581-584.
Dolan J.W. Selectivity in reversed-phase LC separations (Part 2): Solvent-strength selectivity. LC-GC Eur. 2011, 24:20-24.
Pursh M., Scheiwer-Theobaldt A., Cortes H., Gratzfeld-Huesgen A., Schulenberg-Shell H., Hoffmann B.-W. Fast, ultra-fast and high-resolution LC for separation of small molecules, oligomers and polymers. LC-GC Eur. 2008, 21:152-159.
De Beer M., Lynen F., Chen K., Ferguson P., Hanna-Brown M., Sandra P. Stationary-phase optimized selectivity liquid chromatography: development of a linear gradient prediction algorithm. Anal. Chem. 2010, 82:1733-1743.
Goga S., Heinisch S., Rocca J.L. Retention and column efficiency in reversed phase liquid chromatography as a function of pH for optimization purposes. Chromatographia 1998, 48:237-244.
Nikitas P., Papa-Louisi A. New Approaches to linear gradient elution used for optimization in reversed-phase liquid chromatography. J. Liq. Chromatogr. Relat. Technol. 2009, 32:1527-1576.
Dharmadi Y., Gonzalez R. A better global resolution function and a novel iterative stochastic search method for optimization of high-performance liquid chromatographic separation. J. Chromatogr. A 2005, 1070:89-101.
Giddings J.M., Davis J.C. Statistical method for estimation of number of components from single complex chromatograms: theory, computer-based testing, and analysis of errors. Anal. Chem. 1985, 57:2168-2177.
Jupille T., Snyder L., Molnar I. Optimizing multi-linear gradients in HPLC. LC-GC Eur. 2002, 596-601.
Concha-Herrara V., Vivó-Truyols G., Torres-Lapasio J.R., García-Alvarez-Coque M.C. Limits of multi-linear gradient optimization in reversed-phase liquid chromatography. J. Chromatogr. A 2005, 1063:79-88.
Xiao H., Liang X., Lu P. Total analytical method for Radix astragali extract using two-binary multi-segment gradient elution liquid chromatography. J. Sep. Sci. 2001, 24:186-196.
Nikitas P., Pappa-Louisi A., Papachristos K. Optimisation technique for stepwise gradient elution in reversed-phase liquid chromatography. J. Chromatogr. A 2004, 1033:283-289.
De Beer M., Lynen F., Hanna-Brown M., Sandra P. Multiple step gradient analysis in stationary phase optimised selectivity LC for the analysis of complex mixtures. Chromatographia 2009, 69:609-614.
Jandera P., Churacek J. Gradient elution in column liquid chromatography: theory and practice. J. Chromatogr. 1979, 170:1-10.
Shan Y., Weibing Z., Seidel-Morgenstern A., Zhao R., Zhang Y. Multi-segment linear gradient optimization strategy based on resolution map in HPLC. Sci. China Ser. B: Chem. 2006, 46:315-325.
Lämmerhofer M., Di Eugenio P.D., Molnar I., Lindner W. Computerized optimization of the high-performance liquid chromatographic enantioseparation of a mixture of 4-dinitrophenyl amino acids on a quinine carbamate-type chiral stationary phase using Drylab. J. Chromatogr. B 1997, 689:123-135.
Hewitt E.F., Lukulay P., Galushko S. Implementation of a rapid and automated high performance liquid chromatography method development strategy for pharmaceutical drug candidates. J. Chromatogr. A 2006, 1107:79-87.
Nikitas P., Pappa-Louisi A., Agrafiotou P. Multilinear gradient elution optimisation in reversed-phase liquid chromatography using genetic algorithms. J. Chromatogr. A 2006, 1120:299-307.
Hadjmohammadi M.R., Kamel K. Multi-linear gradient elution optimization for separation of phenylthiohydantoin amino acids using pareto optimality method. J. Iran. Chem. Soc. 2010, 7:107-113.
Neue U.D., Kuss H-J. Improved reversed-phase gradient retention modeling. J. Chromatogr. A 2010, 1217:3794-3803.
Snyder L.R. Linear elution adsorption chromatography: VII. Gradient elution theory. J. Chromatogr. 1964, 11:415-434.
Snyder L.R., Dolan J.W. High-performance Gradient Elution: The Practical Application of the Linear Solvent Strength Model 2007, Willey Interscience, Hoboken, NJ.
Nikitas P., Pappa-Louisi A. Expressions of the fundamental equation of gradient elution and a numerical solution of these equations under any gradient profile. Anal. Chem. 2005, 77:5670-5677.
Dolan J.W., Lommen D.C., Snyder L.R. Drylab computer simulation for high-performance liquid chromatographic method development: II. Gradient elution. J. Chromatogr. 1989, 485:91-112.
Schellinger A.P., Carr P.W. Isocratic and gradient elution chromatography: a comparison in terms of speed, retention reproducibility and quantitation. J. Chromatogr. A 2006, 1109:253-266.
Morgan S.L., Deming S.N. Optimization strategies for the development of gas-liquid chromatographic methods. J. Chromatogr. 1975, 112:267-285.
Neue U.D. Theory of peak capacity in gradient elution. J. Chromatogr. A 2005, 1079:153-161.
Cabooter D., Clicq D., De Boever F., Lestremau F., Szucs R., Desmet G. A variable column length strategy to expedite method development. Anal. Chem. 2011, 83:66-975.
Komány R., Molnár I., Rieger H-J. Exploring better column selectivity choices in ultra-high performance liquid chromatography using quality by design principles. J. Pharm. Biomed. 2013, 80:79-88.
Molnár I., Rieger H-J., Monks K.E. Aspects of the design space in high pressure liquid chromatography method development. J. Chromatogr. A 2010, 1217:3193-3200.
Similar publications
Sorry the service is unavailable at the moment. Please try again later.
This website uses cookies to improve user experience. Read more
Save & Close
Accept all
Decline all
Show detailsHide details
Cookie declaration
About cookies
Strictly necessary
Performance
Strictly necessary cookies allow core website functionality such as user login and account management. The website cannot be used properly without strictly necessary cookies.
This cookie is used by Cookie-Script.com service to remember visitor cookie consent preferences. It is necessary for Cookie-Script.com cookie banner to work properly.
Performance cookies are used to see how visitors use the website, eg. analytics cookies. Those cookies cannot be used to directly identify a certain visitor.
Used to store the attribution information, the referrer initially used to visit the website
Cookies are small text files that are placed on your computer by websites that you visit. Websites use cookies to help users navigate efficiently and perform certain functions. Cookies that are required for the website to operate properly are allowed to be set without your permission. All other cookies need to be approved before they can be set in the browser.
You can change your consent to cookie usage at any time on our Privacy Policy page.