de Villiers A., Kalili M., Malan M., Roodman J. Improving HPLC separations of polyphenols. LC-GC Eur. 2010, 23:466-478.
Jandera P. Can theory of gradient liquid chromatography be useful in solving practical problems?. J. Chromatogr. A 2006, 1126:195-218.
Dolan J.W. Selectivity in reversed-phase LC separations (Part 1): Solvent-type selectivity. LC-GC Eur. 2010, 23:581-584.
Dolan J.W. Selectivity in reversed-phase LC separations (Part 2): Solvent-strength selectivity. LC-GC Eur. 2011, 24:20-24.
Pursh M., Scheiwer-Theobaldt A., Cortes H., Gratzfeld-Huesgen A., Schulenberg-Shell H., Hoffmann B.-W. Fast, ultra-fast and high-resolution LC for separation of small molecules, oligomers and polymers. LC-GC Eur. 2008, 21:152-159.
De Beer M., Lynen F., Chen K., Ferguson P., Hanna-Brown M., Sandra P. Stationary-phase optimized selectivity liquid chromatography: development of a linear gradient prediction algorithm. Anal. Chem. 2010, 82:1733-1743.
Goga S., Heinisch S., Rocca J.L. Retention and column efficiency in reversed phase liquid chromatography as a function of pH for optimization purposes. Chromatographia 1998, 48:237-244.
Nikitas P., Papa-Louisi A. New Approaches to linear gradient elution used for optimization in reversed-phase liquid chromatography. J. Liq. Chromatogr. Relat. Technol. 2009, 32:1527-1576.
Dharmadi Y., Gonzalez R. A better global resolution function and a novel iterative stochastic search method for optimization of high-performance liquid chromatographic separation. J. Chromatogr. A 2005, 1070:89-101.
Giddings J.M., Davis J.C. Statistical method for estimation of number of components from single complex chromatograms: theory, computer-based testing, and analysis of errors. Anal. Chem. 1985, 57:2168-2177.
Jupille T., Snyder L., Molnar I. Optimizing multi-linear gradients in HPLC. LC-GC Eur. 2002, 596-601.
Concha-Herrara V., Vivó-Truyols G., Torres-Lapasio J.R., García-Alvarez-Coque M.C. Limits of multi-linear gradient optimization in reversed-phase liquid chromatography. J. Chromatogr. A 2005, 1063:79-88.
Xiao H., Liang X., Lu P. Total analytical method for Radix astragali extract using two-binary multi-segment gradient elution liquid chromatography. J. Sep. Sci. 2001, 24:186-196.
Nikitas P., Pappa-Louisi A., Papachristos K. Optimisation technique for stepwise gradient elution in reversed-phase liquid chromatography. J. Chromatogr. A 2004, 1033:283-289.
De Beer M., Lynen F., Hanna-Brown M., Sandra P. Multiple step gradient analysis in stationary phase optimised selectivity LC for the analysis of complex mixtures. Chromatographia 2009, 69:609-614.
Jandera P., Churacek J. Gradient elution in column liquid chromatography: theory and practice. J. Chromatogr. 1979, 170:1-10.
Shan Y., Weibing Z., Seidel-Morgenstern A., Zhao R., Zhang Y. Multi-segment linear gradient optimization strategy based on resolution map in HPLC. Sci. China Ser. B: Chem. 2006, 46:315-325.
Lämmerhofer M., Di Eugenio P.D., Molnar I., Lindner W. Computerized optimization of the high-performance liquid chromatographic enantioseparation of a mixture of 4-dinitrophenyl amino acids on a quinine carbamate-type chiral stationary phase using Drylab. J. Chromatogr. B 1997, 689:123-135.
Hewitt E.F., Lukulay P., Galushko S. Implementation of a rapid and automated high performance liquid chromatography method development strategy for pharmaceutical drug candidates. J. Chromatogr. A 2006, 1107:79-87.
Nikitas P., Pappa-Louisi A., Agrafiotou P. Multilinear gradient elution optimisation in reversed-phase liquid chromatography using genetic algorithms. J. Chromatogr. A 2006, 1120:299-307.
Hadjmohammadi M.R., Kamel K. Multi-linear gradient elution optimization for separation of phenylthiohydantoin amino acids using pareto optimality method. J. Iran. Chem. Soc. 2010, 7:107-113.
Neue U.D., Kuss H-J. Improved reversed-phase gradient retention modeling. J. Chromatogr. A 2010, 1217:3794-3803.
Snyder L.R. Linear elution adsorption chromatography: VII. Gradient elution theory. J. Chromatogr. 1964, 11:415-434.
Snyder L.R., Dolan J.W. High-performance Gradient Elution: The Practical Application of the Linear Solvent Strength Model 2007, Willey Interscience, Hoboken, NJ.
Nikitas P., Pappa-Louisi A. Expressions of the fundamental equation of gradient elution and a numerical solution of these equations under any gradient profile. Anal. Chem. 2005, 77:5670-5677.
Dolan J.W., Lommen D.C., Snyder L.R. Drylab computer simulation for high-performance liquid chromatographic method development: II. Gradient elution. J. Chromatogr. 1989, 485:91-112.
Schellinger A.P., Carr P.W. Isocratic and gradient elution chromatography: a comparison in terms of speed, retention reproducibility and quantitation. J. Chromatogr. A 2006, 1109:253-266.
Morgan S.L., Deming S.N. Optimization strategies for the development of gas-liquid chromatographic methods. J. Chromatogr. 1975, 112:267-285.
Neue U.D. Theory of peak capacity in gradient elution. J. Chromatogr. A 2005, 1079:153-161.
Cabooter D., Clicq D., De Boever F., Lestremau F., Szucs R., Desmet G. A variable column length strategy to expedite method development. Anal. Chem. 2011, 83:66-975.
Komány R., Molnár I., Rieger H-J. Exploring better column selectivity choices in ultra-high performance liquid chromatography using quality by design principles. J. Pharm. Biomed. 2013, 80:79-88.
Molnár I., Rieger H-J., Monks K.E. Aspects of the design space in high pressure liquid chromatography method development. J. Chromatogr. A 2010, 1217:3193-3200.