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a  b  s  t  r  a  c  t

Linear  gradient  programs  are very  frequently  used  in  reversed  phase  liquid  chromatography  to enhance
the  selectivity  compared  to  isocratic  separations.  Multi-linear  gradient  programs  on the  other  hand  are
only scarcely  used,  despite  their intrinsically  larger  separation  power.  Because  the gradient-conformity
of  the  latest  generation  of instruments  has  greatly  improved,  a renewed  interest  in more  complex  multi-
segment  gradient  liquid  chromatography  can  be expected  in  the  future,  raising  the need  for better
performing  gradient  design  algorithms.  We  explored  the  possibilities  of a  new type of  multi-segment
gradient  optimization  algorithm,  the  so-called  “one-segment-per-group-of-components”  optimization
strategy.  In this  gradient  design  strategy,  the  slope  is adjusted  after  the  elution  of each  individual  com-
ponent  of  the  sample,  letting  the  retention  properties  of  the  different  analytes  auto-guide  the  course  of
the  gradient  profile.  Applying  this  method  experimentally  to four  randomly  selected  test  samples,  the
ulti-segment gradients
radient optimization

separation  time  could  on  average  be reduced  with  about  40%  compared  to the  best  single linear  gradi-
ent.  Moreover,  the  newly  proposed  approach  performed  equally  well  or better  than  the  multi-segment
optimization  mode  of  a commercial  software  package.  Carrying  out  an  extensive  in  silico  study,  the
experimentally  observed  advantage  could  also  be generalized  over  a statistically  significant  amount  of
different  10  and 20  component  samples.  In  addition,  the  newly  proposed  gradient  optimization  approach
enables  much  faster  searches  than the  traditional  multi-step  gradient  design  methods.

©  2014  Elsevier  B.V.  All  rights  reserved.
. Introduction

In reversed-phase liquid chromatography, selectivity can be
btained by varying many adjustable parameters: stationary phase
hemistry, mobile phase composition, temperature, pH and of
ourse by imposing a gradient mobile phase program [1–10]. Most
radient programs used in practice are simply linear. Multi-linear
r multi-step gradient programs are only scarcely used, despite
heir intrinsically larger separation power. This lack of use is mainly

ue to the difficulty with which the (older generation) instruments
an to comply to the imposed complex gradient program, as well
s the lack of good search strategies to find the best multi-segment
rogram among the innumerous possible combinations [11,12].

∗ Corresponding author.
E-mail address: Eva.Tyteca@vub.ac.be (E. Tyteca).

ttp://dx.doi.org/10.1016/j.chroma.2014.06.097
021-9673/© 2014 Elsevier B.V. All rights reserved.
Because the gradient-conformity of the latest generation of instru-
ments has greatly improved, a renewed interest in more complex
multi-segment gradient LC can be expected in the future, raising
the need for better performing gradient design algorithms.

Many different stepwise or multi-isocratic gradient optimiza-
tion methods have already been suggested in literature, such as
overlapping separation range mapping [13], Monte-Carlo optimiza-
tion [14], stationary phase optimized selectivity chromatography
(SOSLC) [15], and stepwise elution chromatography through back
calculation of the solvent concentration %B from Rs as a function
of the retention factor (as a function of %B) [16]. However, multi-
linear gradient optimization is mostly done in a trial-and-error

fashion using simulation software such as DryLab [17,18]. This
approach starts from the best linear gradient, inserting a number
of node points, and subsequently dragging and dropping each node
and evaluating the corresponding simulated chromatogram until a
satisfactory separation is obtained. Another powerful approach is
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Fig. 1. “One-segment-per-component” multi-segment optimization approach
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where  ̌ is the gradient steepness defined as  ̌ = (�e − �0)/tG.
For a simple linear gradient, the summation in the second term

on the right hand side of in Eq. (2) disappears. Solving Eq. (2)
gives an expression for �elution from which an expression for keff
(defined as the reduced retention time per column hold-up volume:
keff = (tR − t0)/t0) can be easily found via the following relation:
sing one segment for each eluting compound. The gradient steepness  ̌ is opti-
ized for every compound separately and each gradient segment is ended after the

lution of the compound.

hromsword. This software combines chromatogram simulation
nd fast Monte-Carlo optimization to optimize multi-linear gra-
ients [19]. In 2006, Nikitas and coworkers reported on the use
f Genetic Algorithms to optimize multi-linear gradients [20,21].
owever, this optimization approach requires a priori selection of

nitial parameters such as the number of generations, the popula-
ion size and the probability of mutation [20]. Concha-Herrara and
oworkers investigated the benefit of including more and more seg-
ents using a time consuming grid search as optimization strategy.

o guide this search the concept of limiting peak purity was  used
12]. The authors reported that gradients including more than four
egments did not enhance the separation.

The present study has been set up to explore the possibilities
f a new type of multi-segment gradient optimization algorithm,
he so-called one-segment-per-component optimization strategy.
n this approach, the slope of the gradient program is allowed to
e adjusted after the elution of each individual component of the
ample (Fig. 1). Doing so, a very high degree of flexibility is given to
he gradient program, which in turn should increase the probability
f finding the most optimal gradient program in terms of speed
nd/or robustness. In addition, the gradient optimization process
s guided by the retention properties of the components (which are
ssumed to be known via a set of independent measurements) such
hat no time is wasted to exploring parts of the solution parameter
pace where anyhow no good selectivity can be expected.

The method assumes that the retention parameters of the indi-
idual compounds are accurately known and runs as follows. First,
ifferent slopes and �0-values for the first segment are considered,
nd the known retention properties are used to calculate which
ompound will elute first. Subsequently, different slopes are con-
idered for the second segment (whose starting point is determined
y the elution of the first component), for each of the different pos-
ible slopes in the first segment. Again, it is checked which one
f the remaining compounds will be eluting first from this sec-
nd segment. This process is repeated until all components have
luted (using one gradient segment per component). As schemat-
cally depicted in Fig. 1, the total number of combinations that
eeds to be searched in this way corresponds to a search tree with
y branches (wherein x = number of compounds and y = number of
onsidered gradient slopes). During the search, not all the branches

ave to explored till the very end because a given branch can be
onsidered as non-optimal as soon as one of the peak pairs elutes
ith a resolution below the minimal threshold corresponding to

he best critical resolution Rs,crit that was already obtained during
 A 1358 (2014) 145–154

the search (in order to never consider a sequence that is worse
than the already considered sequences). This search strategy was
implemented via a self-written MATLAB®-routine.

The present study contains both a numerical as well as an
experimental comparison of the newly proposed one-segment-
per-component optimization strategy with the conventional grid
search for single and multi-step gradients. The numerical study was
conducted to cover a statistically relevant number of different sam-
ples (463 in the present case). The experimental comparison was
run to illustrate how the approach would work for a number of
typical practical separation problems.

2. Material and methods

2.1. Numerical methods

2.1.1. Retention modeling
In the experimental part, the non-linear empirical retention

model proposed by Neue and Kuss [22] was  used to describe the
curved relationship between the natural logarithm of the retention
factor k and the fraction of organic modifier in the mobile phase �:

ln(k) = ln(kw) + 2 ln(1 + S2ϕ) − S1ϕ

1 + S2ϕ
(1)

where kw is the retention factor in pure water, S1 is the slope
(∼solvent strength parameter in the LSS-model from Snyder and
Dolan [23,24]) and S2 is the curvature coefficient. If S2 is equal to
zero Eq. (1) reduces to the conventional LSS-model.

The three-parameter Neue and Kuss-model was  preferred over
the more conventional (and also empirical) two-parameter LSS-
model, because the former is inherently more accurate (because
of the third parameter allowing curvature in the ln(k) vs. ϕ rela-
tion), especially at higher percentages of organic modifier [22].
As the one-segment-per-component method intrinsically allows
to put the peaks in the chromatograms more closer to each other
than the conventional gradient methods, it should be evident that
any gain in prediction accuracy, even though it is only by 1%, can
already be very significant. The predictions obtained with the LSS-
model were simply not good enough to confidently calculate and
experimentally verify the best possible gradient program.

To predict the elution times of the individual compounds,
the fundamental gradient equation [25] was  extended for multi-
segmented gradients, taking into account the instrument dwell
time tD. For an n-segmented gradient this becomes:

t0 =
∫ tD

0

dtS

k
(

ϕ0,1
) +

n−1∑
i=1

∫ ϕe,i

ϕ0,i=ϕe,i−1

1
ˇi

dϕ

k(ϕ)
+

∫ ϕelution

ϕ0,n=ϕe,n−1

1
ˇn

dϕ

k(ϕ)
�elution = �0 + ˇ(tR − t0 − tD) ⇔ keff = tR − t0

t0
= tD

t0
+ �elution − �0

ˇt0
(3)
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Implementing Eq. (1) for the compound eluting with the first
egment, the expression for the effective gradient retention factor
eff becomes:

eff,1 = tD

t0
+

(�0,1 + ((1 + S2�0,1)/S1)ln(ˇ1k′
wS1(t0 − tD/k0)exp(−S

ln(1 + ˇ1k′
wS1(t0 − tD/k0)exp(−S1�0,1/(1 + S2�0,1

ˇ1t0

For components eluting during one of the following segments
n > 1), keff is given by

eff,n = tD

t0
+

(
�0,1 +

(
(1 + S2�0,1)/S1)ln(ˇnk′

wS1(t0 − tD/k0)exp(−

× exp(S1�e,i/(1 + S2�e,i))exp(−S1�0,1/(1 + S2�0,1

× exp(−S1�0,1/(1 + S2�0,1)) +
n−1∑
i=1

(ˇn/ˇi+1 − ˇn/

× exp(−S1�0,1/(1 + S2�0,1)) + ˇn/ˇ1
))

− �0,1

The retention parameters of the compounds in the experi-
ental part of the present study were determined by performing

hree linear gradient runs with different gradient times tG, starting
nd/or final concentration of organic modifier (5 to 95%B in 5 and
0 min  and 20 to 80%B in 5 min). The kw

′-, S1- and S2-parameters
ere obtained by solving these three equations (Eq. (4)) using the

sqcurvefit routine in MATLAB©. It should be noted that not ln(keff)
alues but keff values were fitted to obtain the model parameters.
his was done to reduce the problems of least squares fitting in
emi-log scale (small errors in the logarithmic scale being much
arger after back transformation).

In the numerical part of this study, S2 was set equal to zero for the
ake of simplicity (when S2 = 0 the Neue and Kuss-model reduces
o the LSS-model), because it can be inferred that the nature of the
etention model will have no impact on the outcome of the com-
arison study. Moreover, the use of the pure LSS-model enabled us
o consider very realistic kw- and S1-ranges, as the kw- and S-values
eeded in the LSS-model have already been reported in literature

or many compounds, whereas this is not yet the case for the kw
′-

 S1- and S2-parameters from Eq. (1). It would therefore be more
ifficult to find a set of kw

′-, S1- and S2-ranges that represent reality.

.1.2. Gradient optimization strategies

.1.2.1. Linear gradients. The best possible linear gradient parame-
ers (�0, �e and tG) were determined via a conventional grid search
26] using Eq. (4), implemented via an in-home written MATLAB©

ode. In this code, the retention of each compound in the sample
as calculated for each component in the sample using the mea-

ured values for kw
′, S1 and S2 for each component in the sample,

or each physically possible combination of �0 (going from 0.05
o 0.95 with step size of 0.01) and  ̌ (  ̌ going from 0.001 to 0.5,
.e., ln(ˇ) going from −6.9 to −0.69 with step size of 0.07) to find
he combination giving the best separation in the shortest possi-
le analysis time. Solutions for which the last component eluted
fter klast,max = 25 were rejected to prevent finding solutions with
nnecessarily long analysis times. If the experimentally obtained
hromatogram (=partially optimized chromatogram) showed more
han baseline resolution (resulting in a time gap between the
ritical pairs), the linear gradient was manually fine-tuned by short-
ning the gradient time tG (while keeping �0 and �e the same) to
urther speed up the method, until baseline separation was lost.
.1.2.2. “Traditional” multi-segment gradients. The best “tradi-
ional” multi-segment gradient profile (determined by a starting
omposition �0 and a value for  ̌ and tG for each segment) was
etermined via a similar grid search. Based on our own  findings
nd these of Concha-Herrara et al. [12], only 4-segment gradients
A 1358 (2014) 145–154 147

/(1 + S2�0,1))))/(1 − S2(1 + S2�0,1)/S1
 �0,1

(4)

,1/(1 + S2�0,1)) +
∑n−1

i=1 (ˇn/ˇi+1 − ˇn/ˇi)

ˇn/ˇ1s
))

/
(

1 − (S2(1 + S2�0,1)/S1)ln
(

ˇnk′
wS1(t0 − tD/k0)

p(S1�e,i/(1 + S2�e,i))

nt0
(5

were considered as these give the best compromise between the
achievable selectivity (in gradient elution this is the ratio between
the apparent gradient retention factors keff,1/keff,2 [16–27]) and the
required search time. The grid search was conducted considering
different starting concentrations %B between 5 and 95% (step size
of 0.5%) and a number of ˇ- and tG-values for each of the 4 segments
(  ̌ going from 0.001 to 0.2, corresponding to 0.1 to 20%B/min, i.e.,
ln(ˇ) between −6.9 and −0.70 and tG/t0 between 1 and 12). The
best possible grid was used to compare with the newly proposed
“one-segment-per-component” search. The details of the number
of investigated combinations of ˇ- and tG-values used in the numer-
ical comparison study are given in Table 1.

2.1.2.3. “One-segment-per-component” gradients. The newly pro-
posed “one-segment-per-component” gradients were also opti-
mized using a similar grid search approach. However, the
“one-segment-per-component” search only involves the optimiza-
tion of the ˇ-values of each segment (search for  ̌ going from 0.001
to 0.2, see caption of Table 1 for specific values) and does not have
to consider different tG-values, because the length of each segment
tG,n is automatically ended by the elution of the next eluting peak.
As a consequence, the length of each segment tG,n is no longer an
explicit search variable, as it is determined by:

tG,n = tR,n − tD − t0 −
n−1∑
i=1

tG,i (6)

where tR,n is the retention time of the nth eluting peak. For the
experimental samples, the considered ˇ- and tG-values used in the
search grid were the same as in sample set 1 of the numerical study.
When the obtained simulated chromatogram showed a Rs,crit > 1.6,
the optimization program was  run again using a smaller klast,max
(i.e., the maximal k-value for the last eluting compound) until full
resolution was no longer obtained. Although the method (and more
specifically the nature of Eq. (5)) easily allows the incorporation of
negative gradient slopes, this possibility was excluded as it was  our
experience that the potential gain in selectivity usually does not
compensate for the additional peak broadening effect originating
from the negative gradient.

A limitation of the “one-segment-per-component” approach
is that it can lead to gradient profiles that are too complex to

be practically feasible when the samples become too complex
(≥20 compounds). Moreover, the calculation time would increase
limiting the flexibility of the approach. For such samples, a mod-
ification was  made by including two  compounds per segment
instead of only one, in order to keep the maximum number of



148 E. Tyteca et al. / J. Chromatogr. A 1358 (2014) 145–154

Table 1
Numerical simulation study comparing the newly proposed “one-segment-per-component” and “one-segment-two-component” strategies with the traditional 4-segment
grid  search. For the “one-segment-per-component” and “one-segment-two-component” strategies sample sets 1, 2, 4 and 5 and the traditional 4-segment grid search sample
sets  1 and 4: the considered ˇ-values were 0.001, 0.004, 0.014, 0.053 and 0.2. The considered tG-values were 1, 4, 7, 10 and 13 min. For the “one-segment-per-component”
strategy sample set 3 and the traditional 4-segment grid search sample sets 2, 3 and 5 the considered ˇ-values were 0.001, 0.003, 0.008, 0.024, 0.069 and 0.2. The considered
tG-values were 1, 3.5, 6, 8.5, 11 and 13.5 min.

Sample set Nr. of
compounds

Search strategy Number of
search points

Average search
time per sample (s)

klast,average Wins Ex-aequo

1 10 One-segment-per-component 95 × 510 86 9.95 118 35
Four-segment grid 95 × 54 × 54 205 11.27 7

2  10 One-segment-per-component 95 × 510 138 10.60 18 20
Four-segment grid 95 × 64 × 64 1465 9.50 36

3 10 One-segment-per-two-components 95 × 610 1216 9.10 24 6
Four-segment grid 95 × 64 × 64 1410 10.02 4

4 20 One-segment-per-two-components 95 × 510 80 12.57 107 49
95 × 5

95
95 × 6
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Four-segment grid 

5 20 One-segment-per-two-components 

Four-segment grid 

egments limited. This approach is referred to further on as the
one-segment-per-two-components” approach.

.1.2.4. Optimization goal. In each case, the optimization goal of the
earches was expressed via a chromatographic response function
CRF) [28]. Since the retention properties of the analytes are in any
ase known, the most appropriate CRF simply corresponds to the
esolution of the critical pair Rs,crit of the final chromatogram. To
peed up the calculations in the numerical comparison part of the
tudy, only the retention times of the compounds were taken into
ccount. In this case, the expression for Rs,crit reduces to:

RF = min(1.6, Rs,crit) with Rs,crit =
√

N

4
�kcrit

1 + kelution,crit
(7)

here �kcrit is the difference in k between the peaks of the critical
air and kelution,crit the retention factor at elution. The value of N
defined in Eq. (7) as the number of theoretical plates that would be
bserved under gradient elution conditions, see Eq. (2) in Neue [29]
or definition of N) was put arbitrarily at N = 20,000 in the numerical
omparison part of the study. The actually employed value of N
s however totally irrelevant in the above procedure, because the
ame N value was taken for every compound, such that the obtained
hromatograms were anyhow only judged on the selectivity among
he different components.

Experimentally, we adopted the same procedure as Drylab, i.e.,
lling in the plate number obtained by simply estimating N from

 simple van Deemter-equation (roughly leading N = 20,000 in our
ase, where we have put A = 1.2, B = 3.1 and C = 0.15). The resolution
e obtained in the simulated chromatograms were in very good

greement with the experimentally observed resolution.
In both the numerical and experimental part of the study, the

aximization of Rs,crit, was stopped when it reached a maximal
alue of 1.6, i.e., corresponding to a full baseline separation when
onsidering the case of equally high peaks. This upper limit was
mposed to prevent favoring solutions with an unnecessarily large
pacing between the peaks. To find the gradient conditions giv-
ng the best separation in the shortest possible time, the CRF
urthermore also included a time component, implemented via a
onditional statement (“if-then-else” construct). As long as the CRF
ncreases (while Rs,crit < 1.6 and tR,last < tR,max) the newly proposed
radient program is retained, irrespective of tR,last. On the other

and, once full resolution is obtained (Rs,crit = 1.6), only conditions
hat have an tR,last that is smaller than the one already obtained are
etained.

During the searches conducted for the ‘one-segment-per-
omponent’-approach, the local (Rs,n) between the compound
4 × 54 373 13.95 4

 × 510 66 13.57 9 14
4 × 64 3955 13.51 12

eluting in the gradient segment under optimization and the one
eluting in the previous segment was  always considered as well.
Whenever this local Rs,n was insufficient (Rs,n < 1.6), the sequence
is stopped, and the calculation restarts at the first compound. This
allowed speeding up the search, because in this way not all the dif-
ferent branches of the search tree need to be explored till the end.
This is different from the traditional 4-segment grid search, where
the search can only be stopped after each of the four segments.

2.2. Experimental

2.2.1. Sample 1: 15 Tar oil degradation products
The composition of the tar oil degradation products (WWP)

mixture was  based on a study performed by Cabooter et al.
[30] and consisted of (1) quinoline, (2) fluorene, (3) benzofuran,
(4) 2-naphthol, (5) indene, (6) 1-indanon, (7) 9-hydroxyfluorene,
(8) dibenzofuran, (9) 2-hydroxyquinoline, (10) 1-benzothiophene,
(11) dibenzothiophene sulfone, (12) 2-naphthoic acid, (13) ace-
napthene, (14) carbazole and (15) indane. All compounds except
benzothiophene were purchased from Sigma-Aldrich, Bornem,
Belgium. Benzothiophene was purchased from VWR, Leuven,
Belgium. All components were dissolved to a final concentration of
100 ppm in 5/95 vol%/vol% H2O/ACN. The mobile phase consisted
of (A) H2O with 10 mM ammonium acetate, adjusted to pH 6.8 with
ammonium hydroxide and (B) ACN. ACN was  purchased from Bio-
solve. The separation was performed on an Agilent Infinity 1290
system with a dwell volume of 112 �L using a 100 mm Waters
Acquity UPLC BEH phenyl column (2.1 × 100 mm,  1.7 �m).  The
injection volume was 1 �L. The flow rate was 0.6 mL/min and the
temperature was  23 ◦C. The column dead time was 0.35 min. The
components were detected at 210 nm (sample rate of 80 Hz). Scout-
ing runs were 5–95%B in 5 and 10 min  and 20–80%B in 5 min.

2.2.2. Sample 2: API and 13 impurities
The pharmaceutical mixture provided by UCB Pharma (Braine

l’Alleud, Belgium) consisted of 14 closely related compounds (API
and 13 impurities). The identities of the compounds are confiden-
tial and are therefore not listed. The separation was performed
on a Waters UPLC system with a dwell volume of 72 �L using a
Waters Acquity CSH C18 column (2.1 × 100 mm,  1.7 �m).  The col-
umn  temperature was set 40 ◦C. The flow rate was 0.6 mL/min. The

column dead time was 0.61 min. The mobile phase consisted of (A)
a 50 mM ammonium acetate buffer with 0.04% formic acid and (B)
ACN with 0.04% formic acid. All compounds were dissolved to a
final concentration of 500 ppm and the injection volume was 2 �L.
Chromatograms were measured at 210 nm (sample rate of 80 Hz).
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couting runs were 5–95%B in 5, 10 and 15 min  and 20–80%B in 5
nd 10 min.

.2.3. Sample 3 and 4: 14 and 16 drugs commonly found in waste
ater

The 16 component drugs sample consisted of (1) ethinylestra-
iol, (2) sulfamethoxazole, (3) ibuprofen, (4) ticlopidine, (5)
estosterone, (6) oxazepam, (7) estrone, (8) carbamazepine, (9)
orazepam, (10) paracetamol, (11) diclofenac, (12) caffeine, (13)
olpidem, (14) trimethoprim, (15) progesterone and (16) �-
stradiol. For the 14 component sample, component 15 and 16 were
eft out. Components 1, 5–7, 11 and 14–16 were dissolved in EtOH
Sigma-Aldrich), components 2, 3, 8 and 9 in ACN and components
, 10, 12 and 13 in H2O (British Pharmacopoeia, 2012). All com-
ounds were dissolved to a final concentration of 50 ppm in EtOH
Sigma-Aldrich), except for component 5 and 15 which had a final
oncentration of 200 ppm. The mobile phase used for the separa-
ion of these mixtures consisted of (A) a 10 mM ammonium formate
uffer adjusted to pH 3 with formic acid and (B) ACN. The flow rate
as 0.4 mL/min. The column dead time was 0.53 min. The injec-

ion volume was 1 �L. The separation was performed on a Agilent
nfinity 1290 system with a dwell volume of 112 �L using a Waters
cquity BEH C18 column (2.1 × 100 mm,  1.7 �m).  Column temper-
ture was set 25 ◦C. Chromatograms were measured at 210 nm
sample rate of 80 Hz). Scouting runs were 5–95%B in 5 and 10 min
nd 20–80%B in 5 min. For components 1 and 7 two extra scouting
uns (10–65%B in 5 min  and 30–60%B in 5 min) were performed to
etermine the model parameters.

. Results and discussion

.1. Results of numerical study

In-silico samples with different complexity, i.e., containing
ither 10 or 20 compounds, were composed by randomly attribut-
ng each component a physically possible kw- and S-value taken
rom eight different ranges (Table S-1). This was done for 160 sam-
les per sample complexity, in groups of 20 per considered kw- and
1-range (as already mentioned, S2 = 0 for all compounds was taken
or the sake of simplicity). The optimal gradient program was subse-
uently determined following the procedures described in Section
.1.2 for the traditional 4-segment gradient and the presently
roposed “one-segment-per-component” (10 component samples)
nd “one-segment-per-two-components” (20 component sam-
les) gradient optimization algorithms.

To distinguish between the required search time and the pos-
ibility to obtain the best selectivity as the performance criteria,
he total search time of the methods has been varied by changing
he number of considered ˇ- and tG-values. The different sample
ets with their corresponding number of search points are given
n Table 1. Sample sets 1 to 3 included the 10-compound samples
nd sample sets 4 and 5 included the 20-compound samples. For
ll sample sets the number of possible starting combinations %Bstart

as 95 (from 1% to 95% with step size of 1%). In sample set 1, five
ifferent slopes  ̌ were considered for each segment, hence giv-

ng 95 × 510 combinations for the “one-segment-per-component”
earch in case of the 10 component samples. For the traditional
-segment grid search five different lengths and five different
lopes were considered per segment, hence a total of 95 × 54 × 54

ombinations needed to be considered in the search. Although

he number of considered combinations is lower for the tradi-
ional 4-segment grid search, the search times are larger because
he number of combinations that is calculated during the search
s higher. As mentioned in Section 2.1.2, the one-segment-per-
omponent” approach allows to stop calculating a given sequence
A 1358 (2014) 145–154 149

after each component (or each pair of compounds in case of the
one-segment-two-components) when the local Rs,n between this
compound and the compound before is insufficient, while the tra-
ditional 4-segment grid search can only do this after each of the
four segments. In sample sets 2, 3 and 5, the search time of the
traditional grid search was increased by considering six instead of
only 5 different slopes and segment lengths. In sample set 3 the
“one-segment-per-component” strategy also included six different
slopes, hence also increasing its search time.

Next to the calculation time also the analysis time (klast)
is reported for every sample set in Table 1. A win-loss com-
parison was made by comparing the retention factor of the
last compound klast. A “win” for strategy 1 was reported when
klast,strategy1 < klast,strategy2 − 0.5. A difference of 0.5 in klast was con-
sidered to be a significant difference in order to get representative
results. When the difference in klast was  less than 0.5 an ex-aequo
between the two strategies was  reported. For the 10 component
samples, the “one-segment-per-component” nearly always wins
even when it is allotted a smaller search time than the 4-segment
grid search (118 wins vs. 7 wins for the 4-segment grid search,
see sample set 1). The 4-segment grid only manages to slightly
outperform the “one-segment-per-component” strategy when it
is allotted a 10 times larger search (sample set 2). When the time
allotted to the “one-segment-per-component” search is then again
increased to the same level (sample set 3), the latter again wins con-
vincingly. In sample sets 4 and 5, a similar conclusion can be drawn
for the “one-segment-per-two-components”-strategy applied to
20 component samples. Here, a 50 times larger search time is
needed before the traditional 4-segment grid produces a similar
number of wins as the “one-segment-per -two-components”-
strategy (sample set 5). When the traditional 4-segment grid is
only allotted a 5 times larger search time (sample set 4), the latter
only gets 4 wins vs. 107 wins for the “one-segment-per -two-
components”-strategy. For each comparison a new set of samples
was generated, hence explaining the difference in search times
for the “one-segment-per-component” and the “one-segment-per-
two-components” strategies, respectively, among sample sets 1–3
and among sample set 4–5 in Table 1.

When comparing both methods for a similar number of search
points (data set 3), the time gain is 9 min  vs. 10 min. Although
some of the solutions obtained for the 4-segment procedure might
have a slightly higher resolution than those obtained with the 1-
comp-per-segment (although also the opposite occurs), and higher
resolution can in theory be traded for a shorter analysis time, this
time gain is much larger than can be explained by the residual
differences in resolution.

This over-all better performance can be understood as follows.
In the traditional multi-step gradient approach, the breakpoints
between the segments are introduced at random points. The “one-
segment-per-component” approach (Section 2.1.2) on the other
hand uses the retention characteristics of the sample compounds
to introduce a breakpoint time after the elution of each compo-
nent. As a consequence, the trajectory of the gradient program is
auto-guided by the elution properties of the sample compounds,
such that no time is wasted to searching in areas of the param-
eter space where there is anyhow no chance of finding a good
solution as is inevitably the case in the traditional multi-step gra-
dient approach. Furthermore, the one-segment-per-component”
approach also allows to stop calculating a given sequence after
each component (or each pair of compounds in case of the one-
segment-two-components) when the local resolution Rs,n between

this compound and the compound eluting in the previous segment
is insufficient. This provides an additional gain in search time vs.
number of search points (Table 1).

Moreover, because the present approach uses the information
on the retention properties of the compounds, the search for the
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mode) the separation was optimized using the fine optimization
mode, resulting in a three-segmented gradient (Table S-2). The
corresponding separation has roughly the same analysis time as
with the best linear gradient and thus much slower than with the

Table 2
Predicted and experimental retention times for Sample 1 (15 tar oil degradation
products) obtained via the “one-segment-per-component” approach.

tR,predicted tR,exp Deviation (%)

0.86 0.80 −7.1
0.93  0.89 −4.6
1.28  1.22 −4.9
1.40  1.30 −7.1
1.88  1.90 1.0
1.96  1.98 0.9
2.11  2.12 0.5
2.35  2.36 0.4
2.85  2.84 −0.2
2.97  2.95 −0.6
ig. 2. Chromatograms of the tar oil degradation sample obtained with (A) best linea
pproach; (C) 3-segment gradient obtained with the fully optimized method develo

est gradient program is automatically directed in the right direc-
ion, in contrast to a traditional grid search, in which the solution
pace is scanned in a uniform way without taking into account the
etention properties of the compounds. The latter will result in the
nnecessary calculation of irrelevant and non-optimal gradients
onditions.

.2. Experimental results

To validate the “one-segment-per-component” approach exper-
mentally, it has also been applied to four randomly selected
xamples. In each case, the newly proposed multi-segment opti-
ization strategy allowed to speed up the separation compared

o the best linear gradient. Moreover, it performed equally well or
etter than the multi-segment optimization mode of Chromsword
oftware.

.2.1. Sample 1: 15 Tar oil degradation products
The first sample includes 15 tar oil degradation products. With

he “one-segment-per-component” optimization strategy a 15-
egment gradient was found including a small isocratic step at the
eginning. The one-segment-per-component gradient is in fact a

-segment gradient as many consecutive gradient segments have
almost) the same gradient slope. The analysis time of the 15 tar oil
egradation products could be reduced by 24% compared to the best

inear gradient (24.0%B to 59.0%B in 5.60 min) proposed by Cabooter
t al. [30] (Fig. 2A and B). Using the Neue–Kuss model described by
ient; (B) multi-segmented gradient obtained via the “one-segment-per-component”
t mode of a commercial software package.

Eq. (1), the mean deviation between the predicted and the observed
k-values for the obtained “one-segment-per-component” gradi-
ent was 2.3% (Table 2). The sample was  also separated using the
fully optimized method development function of the commercial
software package software. After a first screening step (screening
3.17  3.13 −1.4
3.38  3.34 −1.0
3.80  3.74 −1.7
4.00  3.96 −1.1
4.09  4.04 −1.3
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gradient approach (Table S-7), which now includes steeper slopes
than was  the case for sample 3, allowed to reduce the retention
time of the last compound with another 1.2 min. This demonstrates
the flexibility of the proposed optimization strategy. The total

Table 3
Predicted and experimental retention times for Sample 3 (16 drugs commonly found
in  waste water) obtained via the “one-segment-per-component” approach.

tR,predicted tR,exp Deviation (%)

1.18 0.95 −9.9
1.40  1.17 −6.3
1.52  1.54 1.1
1.94  1.95 0.7
2.07  2.02 −2.5
2.18  2.11 −3.4
2.68  2.51 −6.4
2.85  2.72 −4.4
2.96 2.84 −3.9
3.29  3.23 −1.9
3.46  3.39 −2.0
ig. 3. Chromatograms of the 16 drugs sample obtained with (A) Best linear gradient;

ulti-segmented gradient obtained with the presently proposed
one-segment-per-component” approach. Moreover the resolution
f the critical pair was worse (Fig. 2C).

.2.2. Sample 2: API and 13 impurities
The second sample consists of an active pharmaceutical

ngredient (API) and 13 degradation products. The “one-segment-
er-component” optimization approach approximately results in

 3-segment gradient which could reduce the analysis time with
bout 50% compared to the best simulated linear gradient (Fig.
-1A and B). In this case the “one-segment-per-component” strat-
gy did not improve the Rs or the analysis time compared to the
ulti-segmented gradient obtained with the commercial software

ackage, using the multi-segment optimization mode (Fig. S-1C). The
radient conditions are given in Table S-3. Because the compounds
f the pharmaceutical sample are structurally closely related, the
etention parameters of the Neue–Kuss model (cf. Eq. (1)), were
etermined using six instead of three scouting runs, including
ifferent gradient lengths (5, 10, 15 min) and different starting com-
ositions (5% and 20%), resulting in an average deviation between
redicted and experimental retention times of 0.6% including the
rst eluting compounds (Table S-4). The exact modeling of the crit-

cal pair was found to be of uttermost importance as both peaks can
witch elution order when changing the gradient slope.

.2.3. Sample 3: 16 drugs commonly found in waste water
The third sample consists of 16 drugs that are commonly found

n waste water [31]. The “one-segment-per-component” gradient
ncludes an isocratic step at the beginning, followed by six linear
egments that actually follow a curved (%B,time)-pattern, starting
ith a steep (second) gradient segment to an almost isocratic step

7th gradient step) (Fig. 3). This curvature could again be approxi-

ated by only three linear segments, and different segments with

imilar slopes, which could be approximated by one linear seg-
ent. Gradient segments 8 to 16 follow an almost linear behavior,

ncluding three small isocratic steps (step 9, 12 and 15). The “one-
egment-per-component” optimization approach could reduce the
ulti-segmented gradient obtained via the “one-segment-per-component” approach.

analysis time with 35% compared to the best linear gradient. The
gradient conditions are given in Table S-5. The average deviation
between the predicted and the experimental retention times was
2.4% (except for the first 2 eluting compounds, see Table 3). It was
verified that although the baseline is quite complex, following the
complex multi-segmented gradient program, the peaks can still be
integrated accurately (see zoom-in in Fig. 3).

3.2.4. Sample 4: 14 drugs commonly found in waste water
For the subset of 14 components (numbers 1 to 14 from Sample

3) the analysis time could be reduced even more. Since the critical
pair is the same as for the 16 component sample, the best linear
gradient (9.5–75%B in 7.5 min) is the same as for the 16 component
mixture. On the other hand, the “one-segment-per-component”
3.63  3.54 −2.5
3.75  3.69 −1.5
4.36  4.29 −1.6
4.50  4.44 −1.4
4.76  4.73 −0.6
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ig. 4. Robustness test. Chromatograms of the 14 waste water pollutants obtained w
ives  baseline separation on the new column from another batch (red) and (B) multi
eparation between compounds 4, 5 and 6 is maintained when switching from one c
nd  particle size, but from a different batch). (For interpretation of the references to

eduction in analysis time compared to the best linear gradient was
n this case 48% (Fig. S-2). The average deviation between the pre-
icted and the experimental retention times was 2.9% (Table S-6).

t should be noted that in this case the pumping system is pushed to
ts very limits. Because the steep slope of the third segment (at low
ACN) leads to an overshoot in the baseline, the second and the
hird peak are in this case no longer be perfectly integrated (see
oom in Fig. S-2).

.3. Robustness test

We  also investigated whether the “one-segment-per-
omponent” approach leads to more robust gradient methods, i.e.,
ess sensitive to small selectivity differences between different
olumns of the same type compared to the more conventional
inear gradient optimization, because the “one-segment-per-
omponent” approach allows spacing the different peaks more
qually over the entire chromatogram. Although perfect even
pacing is of course the ultimate (unrealistic) goal and will indeed
ost of the time not be reached, even with a very complex gradient

rofile, the proposed one-segment-per-component gradient can
e used to induce a more even spacing than in the case of a simple

inear gradient and can in these cases be used as a way to increase
he robustness of a separation when changing columns.

Numerically this is imposed by leaving out the maximum value

or Rs,crit while keeping the “if-then-else” construct to put an upper
imit on the maximal analysis time. In this way, the peaks of the
ritical pair get some freedom to move while solutions leading to an
xcessively large spacing between the peaks are avoided because
f the time constraint. This approach has been applied to the 14
) the best linear gradient (9.5–75%B in 7.5 min) on the first column (blue) no longer
ented gradient obtained via the “one-segment-per-component” approach. Baseline
n to another column (same manufacturer, same stationary phase, same dimensions

 in this figure legend, the reader is referred to the web version of this article.)

component mixture (Sample 4), taking tR,max equal to the value of
tR,last of the best linear gradient.

The robustness was tested experimentally by repeating the opti-
mized linear and multi-segmented gradient on a new column from
the same manufacturer, with the same stationary phase, column
dimensions and particle size but from a different batch. As can
be noted from Fig. 4A, switching from one column to another
(although from the same type and the same manufacturer) dramat-
ically reduces the resolution of the critical pair for the best linear
gradient. On the other hand, the one-segment-per-component gra-
dient program (Table S-9) resulted in baseline separated peaks on
both columns (Fig. 4B), because of the much more even spacing of
the peaks that can be achieved. The average deviation between the
predicted and the experimental retention times was  1.4% except
for the first eluting compound (Table S-8).

4. Conclusion

We  developed a “one-segment-per-group-of-components” gra-
dient design strategy and applied it to find the best possible
multi-segment gradient program. The different strategies were
applied to real (tar oil degradation products, pharmaceuticals) as
well as to in silico samples. The analysis times were reduced signif-
icantly compared to the best single linear gradients. To account
for the non-LSS behavior of the compounds, the model pro-

posed by Neue and Kuss [23] was  used to obtain the necessary
accurate retention time predictions. Since the “one-segment-per-
component” method intrinsically allows to put the peaks in the
chromatograms more closer to each other than the conventional
gradient methods, our experience with the optimization of the
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xperimental examples showed that any gain in prediction accu-
acy, even though it is only by 1%, is very significant.

The newly proposed approach performed equally well or bet-
er than the multi-segment optimization mode of the commercial
oftware package. The in silico study demonstrated the enhanced
electivity of the “one-segment-per-component” (10 component
amples) and the “one-segment-per-two-components” (20 com-
onent samples) gradient design strategies compared to the
raditional 4-segment grid search over a statistically significant
mount of different samples (463 in total). Another advantage of
he “one-segment-per-group-of-components” strategy is that the
ime needed to find the optimal gradient profile is much shorter
han when optimizing the traditional multi-step gradient. This
riginates from the fact that the trajectory of the gradient pro-
ram in the “one-segment-per-group-of-components” approach is
uto-guided by the elution properties of the sample compounds.
ence, no time is wasted to searching in areas of the parameter

pace where there is anyhow no chance of finding a good solu-
ion.

Conceptually, the presently proposed segmented gradient opti-
ization methods can readily fit in the advanced 3D or 4D MD

trategies used nowadays [31,32]. either as the final step after selec-
ion of the most promising stationary phase, modifier solvent, pH
nd T (typically done via a design of experiments approach), or as
n integral part of the 3D or 4D search algorithm. To achieve the
atter, the pH- and T-dependency (and possibly also that of the sta-
ionary phase and type of organic modifier) should be modeled via

 design of experiments, similar to what is done in current gradi-
nt optimization software. This modeled dependency can then be
sed in the search for the best one-component-per-segment gra-
ient among all possible combinations of T and pH (and possibly
lso stationary phase and type of organic modifier). In this type
f applications, the enhanced search speed of the one-component-
er-segment method will prove its value even more, because now
uch more cases need to be considered for gradient optimization

nd it has been shown in the present study that the “one-segment-
er-component” is at least one order of magnitude faster than the
raditional multi-step gradient search.

Since it was also demonstrated the concept not only works by
aving one compound eluting per segment (“one-segment-per-
omponent”) but also by grouping them in pairs, cf. the “one-
egment-per-two-components” approach, many other variants can
e conceived of (grouping in triplets, varying the number of com-
ounds per segment, . . .). Given the very short required search
imes, these different variants can furthermore be combined by
unning multiple consecutive searches to also optimize the group-
ng of the components. The robustness example given for the 14
omponent pharmaceutical mix  sample also shows that, because
f the increased possibility to space the peaks more evenly com-
ared to traditional single and multi-step gradient methods, the
one-segment-per-component” gradient design algorithm can also
e tuned to search for intrinsically more robust methods.

To minimize method transfer problems caused by potential
nstrument-depending “rounding” effects of the many individual
radient segments, especially when using older equipment, one
ould also consider implementing a fitting procedure to reduce the
umber of gradient segments, by retrofitting the profile obtained
ia the “one-segment-per-component” strategy with the best fit-
ing 2, 3, 4 or 5-segment profile. In this way, the rapid search offered
y the “one-segment-per-group-of-components”-approach can be
ombined with the more robust “traditional” multi-step gradient

rofile with a pre-set maximum number of segments, which can
lso be more easily validated. In this way, the present procedure
ould still be beneficial for the separation of challenging mixtures
or which multi-segment gradients can provide some additional
electivity, even with the use of older equipment.

[

[

A 1358 (2014) 145–154 153

Acknowledgment

The authors acknowledge financial support of the Research
Foundation-Flanders (FWO-Vlaanderen). E.T. is the recipient of a
Ph.D. fellowship of the FWO-Vlaanderen.

Appendix A. Supplementary data

Supplementary material related to this article can be found,
in the online version, at http://dx.doi.org/10.1016/j.chroma.
2014.06.097.

References

[1] A. de Villiers, M.  Kalili, M. Malan, J. Roodman, Improving HPLC separations of
polyphenols, LC–GC Eur. 23 (2010) 466–478.

[2] P. Jandera, Can theory of gradient liquid chromatography be useful in solving
practical problems? J. Chromatogr. A 1126 (2006) 195–218.

[3] J.W. Dolan, Selectivity in reversed-phase LC separations (Part 1): Solvent-type
selectivity, LC–GC Eur. 23 (2010) 581–584.

[4] J.W. Dolan, Selectivity in reversed-phase LC separations (Part 2): Solvent-
strength selectivity, LC–GC Eur. 24 (2011) 20–24.

[5] M.  Pursh, A. Scheiwer-Theobaldt, H. Cortes, A. Gratzfeld-Huesgen, H.
Schulenberg-Shell, B.-W. Hoffmann, Fast, ultra-fast and high-resolution LC for
separation of small molecules, oligomers and polymers, LC–GC Eur. 21 (2008)
152–159.

[6] M.  De Beer, F. Lynen, K. Chen, P. Ferguson, M.  Hanna-Brown, P. Sandra,
Stationary-phase optimized selectivity liquid chromatography: development
of  a linear gradient prediction algorithm, Anal. Chem. 82 (2010) 1733–1743.

[7] S. Goga, S. Heinisch, J.L. Rocca, Retention and column efficiency in reversed
phase liquid chromatography as a function of pH for optimization purposes,
Chromatographia 48 (1998) 237–244.

[8] P. Nikitas, A. Papa-Louisi, New Approaches to linear gradient elution used
for  optimization in reversed-phase liquid chromatography, J. Liq. Chromatogr.
Relat. Technol. 32 (2009) 1527–1576.

[9] Y. Dharmadi, R. Gonzalez, A better global resolution function and a novel iter-
ative stochastic search method for optimization of high-performance liquid
chromatographic separation, J. Chromatogr. A 1070 (2005) 89–101.

10] J.M. Giddings, J.C. Davis, Statistical method for estimation of number of com-
ponents from single complex chromatograms: theory, computer-based testing,
and analysis of errors, Anal. Chem. 57 (1985) 2168–2177.

11] T. Jupille, L. Snyder, I. Molnar, Optimizing multi-linear gradients in HPLC, LC–GC
Eur. (2002) 596–601.

12] V. Concha-Herrara, G. Vivó-Truyols, J.R. Torres-Lapasio, M.C. García-Alvarez-
Coque, Limits of multi-linear gradient optimization in reversed-phase liquid
chromatography, J. Chromatogr. A 1063 (2005) 79–88.

13] H. Xiao, X. Liang, P. Lu, Total analytical method for Radix astragali extract using
two-binary multi-segment gradient elution liquid chromatography, J. Sep. Sci.
24 (2001) 186–196.

14] P. Nikitas, A. Pappa-Louisi, K. Papachristos, Optimisation technique for stepwise
gradient elution in reversed-phase liquid chromatography, J. Chromatogr. A
1033 (2004) 283–289.

15] M.  De Beer, F. Lynen, M.  Hanna-Brown, P. Sandra, Multiple step gradient anal-
ysis in stationary phase optimised selectivity LC for the analysis of complex
mixtures, Chromatographia 69 (2009) 609–614.

16] P. Jandera, J. Churacek, Gradient elution in column liquid chromatography:
theory and practice, J. Chromatogr. 170 (1979) 1–10.

17] Y. Shan, Z. Weibing, A. Seidel-Morgenstern, R. Zhao, Y. Zhang, Multi-segment
linear gradient optimization strategy based on resolution map in HPLC, Sci.
China Ser. B: Chem. 46 (2006) 315–325.

18] M.  Lämmerhofer, P.D. Di Eugenio, I. Molnar, W.  Lindner, Computerized opti-
mization of the high-performance liquid chromatographic enantioseparation
of a mixture of 4-dinitrophenyl amino acids on a quinine carbamate-type chiral
stationary phase using Drylab, J. Chromatogr. B 689 (1997) 123–135.

19] E.F. Hewitt, P. Lukulay, S. Galushko, Implementation of a rapid and automated
high performance liquid chromatography method development strategy for
pharmaceutical drug candidates, J. Chromatogr. A 1107 (2006) 79–87.

20] P. Nikitas, A. Pappa-Louisi, P. Agrafiotou, Multilinear gradient elution optimi-
sation in reversed-phase liquid chromatography using genetic algorithms, J.
Chromatogr. A 1120 (2006) 299–307.

21] M.R. Hadjmohammadi, K. Kamel, Multi-linear gradient elution optimization
for separation of phenylthiohydantoin amino acids using pareto optimality
method, J. Iran. Chem. Soc. 7 (2010) 107–113.

22] U.D. Neue, H-J. Kuss, Improved reversed-phase gradient retention modeling, J.

Chromatogr. A 1217 (2010) 3794–3803.

23] L.R. Snyder, Linear elution adsorption chromatography: VII. Gradient elution
theory, J. Chromatogr. 11 (1964) 415–434.

24] L.R. Snyder, J.W. Dolan, High-performance Gradient Elution: The Practical
Application of the Linear Solvent Strength Model, Willey Interscience, Hoboken,
NJ, 2007.



1 atogr.

[

[

[

[

[

[

54 E. Tyteca et al. / J. Chrom

25] P. Nikitas, A. Pappa-Louisi, Expressions of the fundamental equation of gradient
elution and a numerical solution of these equations under any gradient profile,
Anal. Chem. 77 (2005) 5670–5677.

26] J.W. Dolan, D.C. Lommen, L.R. Snyder, Drylab computer simulation for
high-performance liquid chromatographic method development: II. Gradient

elution, J. Chromatogr. 485 (1989) 91–112.

27] A.P. Schellinger, P.W. Carr, Isocratic and gradient elution chromatography: a
comparison in terms of speed, retention reproducibility and quantitation, J.
Chromatogr. A 1109 (2006) 253–266.

28] S.L. Morgan, S.N. Deming, Optimization strategies for the development of
gas–liquid chromatographic methods, J. Chromatogr. 112 (1975) 267–285.

[

[

 A 1358 (2014) 145–154

29] U.D. Neue, Theory of peak capacity in gradient elution, J. Chromatogr. A 1079
(2005) 153–161.

30] D. Cabooter, D. Clicq, F. De Boever, F. Lestremau, R. Szucs, G. Desmet, A vari-
able column length strategy to expedite method development, Anal. Chem. 83
(2011) 66–975.
31] R. Komány, I. Molnár, H-J. Rieger, Exploring better column selectivity choices in
ultra-high performance liquid chromatography using quality by design princi-
ples, J. Pharm. Biomed. 80 (2013) 79–88.

32] I. Molnár, H-J. Rieger, K.E. Monks, Aspects of the design space in high pressure
liquid chromatography method development, J. Chromatogr. A 1217 (2010)
3193–3200.


