[en] RATIONALE: Stable isotope ratios of carbon and nitrogen are valuable tools for field ecologists to use to analyse animal diets. However, the application of these tools requires knowledge of the tissue enrichment factor (TEF) and half-life (HL). We experimentally compared TEF and HL in two freshwater fish larvae. We hypothesised that chub had a better growth/tissue replacement ratio than roach, due to the use of a food closer to their natural diet. METHODS: We determined the isotopic HL, the TEF and the contribution of growth or metabolic tissue replacement to dynamic isotopic incorporation. After yolk sac resorption, larvae were fed for 5 weeks with prey similar to their natural diet (Artemia nauplii) up to the isotopic equilibrium followed by Chironomid larvae. Stable isotope measurements were carried out using a continuous flow isotope ratio mass spectrometer coupled to an elemental analyser. RESULTS: Changes in isotopic composition strongly followed the predictions of exponential growth and time-dependent models. The isotopic HL varied between 8.2 and 12.6 days and the TEF of nitrogen and carbon ranged from 1.7 to 2.1‰ and from –0.9 to 1.2 ‰, respectively. The incorporation of dietary 13C was due more to the production of new tissue (between 56 and 79%) than to the metabolic process. Chub allocated more energy to growth than roach and the Chironomidae diet contributed more to the consumers’ growth than the Artemia diet.
CONCLUSIONS: Metabolic rates seemed lower for chub than for roach, especially when they were fed with Chironomidae. A Chironomidae-based diet would be more profitable to chub, and the high associated growth rate could increase the development of the fish larvae. The HL and TEF were in the range of those reported in the literature. These results will be helpful for field-based studies, because they can help to increase the accuracy of models.
Research Center/Unit :
MARE - Centre Interfacultaire de Recherches en Océanologie - ULiège
SPW DG03-DGARNE - Service Public de Wallonie. Direction Générale Opérationnelle Agriculture, Ressources naturelles et Environnement European Fisheries Fund (contract FEP 32-1109-004)
B. Peterson, B. Fry. Stable isotopes in ecosystem studies. Annu. Rev. Ecol. Syst. 1987, 18, 293.
C. A. Layman, M. S. Araujo, R. Boucek, C. M. Hammerschlag-Peyer, E. Harrison, Z. R. Jud, P. Matich, A. E. Rosenblatt, J. J. Vaudo, L. A. Yeager, D. M. Post, S. Bearhop. Applying stable isotopes to examine food-web structure: an overview of analytical tools. Biol. Rev. 2012, 87, 545.
J. Lazo, M. Darias, E. Gisbert. New approaches to assess the nutritional condition of marine fish larvae. Av. en Nutr. n acuıcola X-memorias 2010, 8, 283.
M. DeNiro, S. Epstein. Influence of diet on the distribution of carbon isotopes in animals. Geochim. Cosmochim. Acta 1978, 42, 495.
M. DeNiro, S. Epstein. Influence of diet on the distribution of nitrogen isotopes in animals. Geochim. Cosmochim. Acta 1981, 45, 341.
S. D. Newsome, C. Martinez Del Rio, S. Bearhop, D. L. Phillips. A niche for isotopic ecology. Front. Ecol. Environ. 2007, 5, 429.
M. A. Vanderklift, S. Ponsard. Sources of variation in consumer-diet δ15N enrichment: a meta-analysis. Oecologia 2003, 136, 169.
M. Vander Zanden, J. B. Rasmussen. Variation in δ15N and δ13C trophic fractionation: Implications for aquatic food web studies. Limnol. Oceanogr. 2001, 46, 2061.
J. H. McCutchan, W. M. Lewis, C. Kendall, C. C. McGrath. Variation in trophic shift for stable isotope ratios of carbon, nitrogen, and sulfur. Oikos 2003, 102, 378.
R. Benner, M. L. Fogel, E. K. Sprague, R. E. Hodson. Depletion of 13 C in lignin and its implications for stable carbon isotope studies. Nature 1987, 329, 708.
U. Focken, K. Becker. Metabolic fractionation of stable carbon isotopes: implications of different proximate compositions for studies of the aquatic food webs using δ13C data. Oecologia 1998, 115, 337.
D. M. Post. Using stable isotopes to estimate trophic position: models, methods, and assumptions. Ecology 2002, 83, 703.
M. J. Vander Zanden, W. W. Fetzer. Global patterns of aquatic food chain length. Oikos 2007, 116, 1378.
N. Wolf, S. A. Carleton, C. Martinez del Rio. Ten years of experimental animal isotopic ecology. Funct. Ecol. 2009, 23, 17.
B. Fry, C. Arnold. Rapid 13C/12C turnover during growth of brown shrimp (Penaeus aztecus). Oecologia 1982, 54, 200.
S. Z. Herzka, G. J. Holt. Changes in isotopic composition of red drum (Sciaenops ocellatus) larvae in response to dietary shifts: potential applications to settlement studies. Can. J. Fish. Aquat. Sci. 2000, 57, 137.
K. L. Bosley, D. A. Witting, R. C. Chambers, S. C. Wainright. Estimating turnover rates of carbon and nitrogen in recently metamorphosed winter flounder Pseudopleuronectes americanus with stable isotopes. Mar. Ecol. Prog. Ser. 2002, 236, 233.
J. Logan, H. Haas, L. Deegan, E. Gaines. Turnover rates of nitrogen stable isotopes in the salt marsh mummichog, Fundulus heteroclitus, following a laboratory diet switch. Oecologia 2006, 147, 391.
D. R. Norris, P. P. Marra, T. K. Kyser, L. M. Ratcliffe. Tracking habitat use of a long-distance migratory bird, the American redstart Setophaga ruticilla, using stable-carbon isotopes in cellular blood. J. Avian Biol. 2005, 36, 164.
C. Martínez del Rio, N. Wolf, S. A. Carleton, L. Z. Gannes. Isotopic ecology ten years after a call for more laboratory experiments. Biol. Rev. 2009, 84, 91.
R. H. Hesslein, K. A. Hallard, P. Ramlal. Replacement of sulfur, carbon, and nitrogen in tissue of growing broad whitefish (Coregonus nasus) in response to a change in diet traced by δ34S, δ13C, and δ15N. Can. J. Fish. Aquat. Sci. 1993, 50, 2071.
H. Lemieux, N. R. Le Francois, P. U. Blier. The early ontogeny of digestive and metabolic enzyme activities in two commercial strains of Arctic charr (Salvelinus alpinus L.). J. Exp. Zool. Part A Comp. Exp. Biol. 2003, 299, 151.
M. J. Wuenschel, R. G. Werner, D. E. Hoss. Effect of body size, temperature, and salinity on the routine metabolism of larval and juvenile spotted seatrout. J. Fish Biol. 2004, 64, 1088.
R. A. Tarboush, S. E. MacAvoy, S. A. Macko, V. Connaughton. Contribution of catabolic tissue replacement to the turnover of stable isotopes in Danio rerio. Can. J. Zool. 2006, 84, 1453.
L. Z. Gannes, D. M. O'Brien, C. Martinez del Rio. Stable isotopes in animal ecology: assumptions, caveats, and a call for more laboratory experiments. Ecology 1997, 78, 1271.
A. Blanck, N. Lamouroux. Large-scale intraspecific variation in life-history traits of European freshwater fish. J. Biogeogr. 2006, 34, 862.
M. Daufresne, P. Boët. Climate change impacts on structure and diversity of fish communities in rivers. Glob. Chang. Biol. 2007, 13, 2467.
P. Garner. Diel patterns in the feeding and habitat use of O-group fishes in a regulated river: the River Great Ouse, England. Ecol. Freshw. Fish 1996, 5, 175.
A. D. Nunn, J. P. Harvey, I. G. Cowx. The food and feeding relationships of larval and 0+ year juvenile fishes in lowland rivers and connected waterbodies. I. Ontogenetic shifts and interspecific diet similarity. J. Fish Biol. 2007, 70, 726.
A. D. Nunn, L. H. Tewson, I. G. Cowx. The foraging ecology of larval and juvenile fishes. Rev. Fish Biol. Fish. 2011, 22, 377.
K. A. B. Hobson, R. G. Clark. Assessing avian diets using stable isotopes I: turnover of 13C in tissues. Condor 1992, 181.
T. Coplen. Guidelines and recommended terms for expression of stable-isotope-ratio and gas-ratio measurement results. Rapid Commun. Mass Spectrom. 2011, 25, 2538.
C. Martínez del Rio, R. Anderson-Sprecher. Beyond the reaction progress variable: the meaning and significance of isotopic incorporation data. Oecologia 2008, 156, 765.
G. A. F. Seber, C. J. Wild. Growth models, in Nonlinear Regression. John Wiley & Sons, Inc., Hoboken, NJ, USA, 1989, pp. 325–365.
L. Gajdzik, G. Lepoint, D. Lecchini, B Frédérich. Comparison of isotopic turnover dynamics in two different muscles of a coral reef fish during the settlement phase. Sci. Mar. 2015, 29, 163.
L. Le Vay, J. Gamboa-Delgado. Naturally-occurring stable isotopes as direct measures of larval feeding efficiency, nutrient incorporation and turnover. Aquaculture 2011, 315, 95.
S. Caut, E. Angulo, F. Courchamp. Variation in discrimination factors (Δ15N and Δ13C): the effect of diet isotopic values and applications for diet reconstruction. J. Appl. Ecol. 2009, 46, 443.
S. L. Kim, C. Martinez del Rio, D. Casper, P. L. Koch. Isotopic incorporation rates for shark tissues from a long-term captive feeding study. J. Exp. Biol. 2012, 215, 2495.
M. J. Vander Zanden, M. K. Clayton, E. K. Moody, C. T. Solomon, B. C. Weidel. Stable isotope turnover and half-life in animal tissues: a literature synthesis. PLoS One 2015, 10, e01161820
D. A. Witting, R. C. Chambers, K. L. Bosley, S. C. Wainright. Experimental evaluation of ontogenetic diet transitions in summer flounder (Paralichthys dentatus), using stable isotopes as diet tracers. Can. J. Fish. Aquat. Sci. 2004, 61, 2069.
J. A. S. Zuanon, A. C. Pezzato, L. E. Pezzato, J. R. S. Passos, M. M. Barros, C. Ducatti. Muscle δ13C change in Nile tilapia (Oreochromis niloticus): Effects of growth and carbon turnover. Comp. Biochem. Physiol. – B Biochem. Mol. Biol. 2006, 145, 101.
I. G. Cowx. Interaction between the roach, Rutilus rutilus, and dace, Leuciscus leuciscus, populations in a river catchment in south-west England. J. Fish Biol. 1989, 35, 279.
M. Yúfera, M. Darias. The onset of exogenous feeding in marine fish larvae. Aquaculture 2007, 268, 53.