[en] The challenges associated with meso- and submesoscale variability (between 1 and 100 km) require high-resolution observations and integrated approaches. Here we describe a major oceanographic experiment designed to capture the intense but transient vertical motions in an area characterized by strong fronts. Finescale processes were studied in the eastern Alboran Sea (Western Mediterranean) about 400 km east of the Strait of Gibraltar, a relatively sparsely sampled area. In-situ systems were coordinated with satellite data and numerical simulations to provide a full description of the physical and biogeochemical variability. Hydrographic data confirmed the presence of an intense salinity front formed by the confluence of Atlantic Waters, entering from Gibraltar, with the local Mediterranean waters. The drifters coherently followed the northeastern limb of an anticyclonic gyre. Near real time data from acoustic current meter data profiler showed consistent patterns with currents of up to 1 m/s in the southern part of the sampled domain. High-resolution glider data revealed submesoscale structures with tongues of chlorophyll-a and oxygen associated with the frontal zone. Numerical results show large vertical excursions of tracers that could explain the subducted tongues and filaments captured by ocean gliders. A unique aspect of AlborEx is the combination of high-resolution synoptic measurements of vessel-based measurements, autonomous sampling, remote sensing and modeling, enabling the evaluation of the underlying mechanisms responsible for the observed distributions and biogeochemical patchiness. The main findings point to the importance of fine-scale processes enhancing the vertical exchanges between the upper ocean and the ocean interior.
Disciplines :
Earth sciences & physical geography
Author, co-author :
Pascual, Ananda; Instituto Mediterráneo de Estudios Avanzados - IMEDEA, Esporles, Spain
Ruiz, Simon; Instituto Mediterráneo de Estudios Avanzados - IMEDEA, Esporles, Spain
Olita, Antonio; Institute for Coastal Marine Environment-National Research Council (IAMC-CNR), Italy
Troupin, Charles ; Université de Liège > Département d'astrophys., géophysique et océanographie (AGO) > GeoHydrodynamics and Environment Research (GHER)
Claret, Mariona; Joint Institute for the Study of the Atmosphere and Ocean, Seattle, WA, USA
Casa, Benjamin; Instituto Mediterráneo de Estudios Avanzados, (CSIC-UIB), Esporles, Spain
Mourre, Baptiste; Balearic Islands Coastal Observing and Forecasting System (SOCIB), Palma de Mallorca, Spain
Poulain, Pierre-Marie; OGS, Trieste, Italy
Tovar-Sanchez, Antonio; nstituto de Ciencias Marinas de Andalucía, (ICMAN – CSIC), Puerto Real, Spain
Capet, Arthur ; Université de Liège > Département de Biologie, Ecologie et Evolution > MAST (Modeling for Aquatic Systems)
Mason, Evan; Instituto Mediterráneo de Estudios Avanzados, (CSIC-UIB), Esporles, Spain
Allen, John; Balearic Islands Coastal Observing and Forecasting System (SOCIB), Palma de Mallorca, Spain
Allen, J., Smeed, D., Tintoré, J., and Ruiz, S. (2001). Mesoscale subduction at the Almeria-Oran front. J. Mar. Syst. 30, 263-285. doi: 10.1016/s0924-7963(01)00062-8
Allen, J. T., Brown, L., Sanders, R., Moore, C. M., Mustard, A., Fielding, S., et al. (2005). Diatom carbon export enhanced by silicate upwelling in the northeast Atlantic. Nature 437, 728-732. doi: 10.1038/nature03948
Bouffard, J., Renault, L., Ruiz, S., Pascual, A., Dufau, C., and Tintoré, J. (2012). Subsurface small-scale eddy dynamics from multi-sensor observations and modeling. Prog. Oceanogr. 106, 62-79. doi: 10.1016/j.pocean.2012.06.007
Capet, X., McWilliams, J. C., Molemaker, M. J., and Shchepetkin, A. F. (2008). Mesoscale to submesoscale transition in the california current system. Part II: frontal processes. J. Phys. Oceanogr. 38, 44-64. doi: 10.1175/2007jpo3672.1
Chelton, D. B., Schlax, M. G., and Samelson, R. M. (2011). Global observations of nonlinear mesoscale eddies. Prog. Oceanogr. 91, 167-216. doi: 10.1016/j.pocean.2011.01.002
Cotroneo, Y., Aulicino, G., Ruiz, S., Pascual, A., Budillon, G., Fusco, G., et al. (2016). Glider and satellite high resolution monitoring of a mesoscale eddy in the Algerian basin: effects on the mixed layer depth and biochemistry. J. Mar. Syst. 162, 73-88. doi: 10.1016/j.jmarsys.2015.12.004
Dufau, C., Orsztynowicz, M., Dibarboure, G., Morrow, R., and Le Traon, P.- Y. (2016).Mesoscale resolution capability of altimetry: Present and future. J. Geophys. Res. Oceans 121, 4910-4927. doi: 10.1002/2015jc010904
Escudier, R., Mourre, B., Juza, M., and Tintoré, J. (2016). Subsurface circulation and mesoscale variability in the Algerian subbasin from altimeter-derived eddy trajectories. J. Geophys. Res. Oceans 121, 6310-6322. doi: 10.1002/2016jc0 11760
Flexas,M., Gomis, D., Ruiz, S., Pascual, A., and León, P. (2006). In situ and satellite observations of the eastward migration of theWestern Alboran Sea Gyre. Prog. Oceanogr. 70, 486-509. doi: 10.1016/j.pocean.2006.03.017
Fu, L.-L., and Ferrari, R. (2008). Observing oceanic submesoscale processes from space. Eos 89, 488-488. doi: 10.1029/2008eo480003
Gomis, D., Pascual, A., and Pedder, M. A. (2005). Errors in dynamical fields inferred from oceanographic cruise data: Part II. The impact of the lack of synopticity. J. Mar. Syst. 56, 334-351. doi: 10.1016/j.jmarsys.2005.02.003
Gomis, D., Ruiz, S., and Pedder, M. (2001). Diagnostic analysis of the 3D ageostrophic circulation from a multivariate spatial interpolation of CTD and ADCP data. Deep Sea Res. I Oceanogr. Res. Pap. 48, 269-295. doi: 10.1016/s0967-0637(00)00060-1
Grasshoff, K., Ehrhardt, M., and Kremling, K. (Eds.) (1983). Methods of Seawater Analysis, 2nd Edn.Weinheim: Verlag Chemie.
Hemsley, V. S., Smyth, T. J., Martin, A. P., Frajka-Williams, E., Thompson, A. F., Damerell, G., et al. (2015). Estimating oceanic primary production using vertical irradiance and chlorophyll profiles from ocean gliders in the North Atlantic. Environ. Sci. Technol. 49, 11612-11621. doi: 10.1021/acs.est.5b00608
Isern-Fontanet, J., García-Ladona, E., and Font, J. (2003). Identification of marine eddies from altimetric maps. J. Atmos. Oceanic Technol. 20, 772-778. doi: 10.1175/1520-0426(2003)20<772:iomefa>2.0.co;2
Juza, M., Mourre, B., Renault, L., Gómara, S., Sebastián, K., Lora, S., et al. (2016). SOCIB operational ocean forecasting system and multi-platform validation in the Western Mediterranean Sea. J. Oper. Oceanogr. 9, s155-s166. doi: 10.1080/1755876x.2015.1117764
Klein, P., and Lapeyre, G. (2009). The oceanic vertical pump induced by mesoscale and submesoscale turbulence. Ann. Rev. Mar. Sci. 1, 351-375. doi: 10.1146/annurev.marine.010908.163704
Krug, M., Swart, S., and Gula, J. (2017). Submesoscale cyclones in the Agulhas current. Geophys. Res. Lett. 44, 346-354. doi: 10.1002/2016gl071006
Lapeyre, G., and Klein, P. (2006). Dynamics of the upper oceanic layers in terms of surface quasigeostrophy theory. J. Phys. Oceanogr. 36, 165-176. doi: 10.1175/jpo2840.1
La Violette, P. E. (1984). The advection of submesoscale thermal features in the Alboran Sea gyre. J. Phys. Oceanogr. 14, 550-565. doi: 10.1175/1520-0485(1984)014<0550:taostf>2.0.co;2
Le Traon, P. Y. (2013). From satellite altimetry to Argo and operational oceanography: three revolutions in oceanography. Ocean Sci. 9, 901-915. doi: 10.5194/os-9-901-2013
Lévy, M., Klein, P., and Treguier, A.-M. (2001). Impact of sub-mesoscale physics on production and subduction of phytoplankton in an oligotrophic regime. J. Mar. Res. 59, 535-565. doi: 10.1357/002224001762842181
Liblik, T., Karstensen, J., Testor, P., Alenius, P., Hayes, D., Ruiz, S., et al. (2016). Potential for an underwater glider component as part of the global ocean observing system.Methods Oceanogr. 17, 50-82. doi: 10.1016/j.mio.2016.05.001
Macías, D., Stips, A., and Garcia-Gorriz, E. (2014). The relevance of deep chlorophyll maximum in the open Mediterranean Sea evaluated through 3D hydrodynamic-biogeochemical coupled simulations. Ecol. Modell. 281, 26-37. doi: 10.1016/j.ecolmodel.2014.03.002
Mahadevan, A. (2016). The impact of submesoscale physics on primary productivity of plankton. Ann. Rev. Mar. Sci. 8, 161-184. doi: 10.1146/annurev-marine-010814-015912
Mahadevan, A.,Oliger, J., and Street, R. (1996a). Anonhydrostatic mesoscale ocean model. Part I: well-posedness and scaling. J. Phys. Oceanogr. 26, 1868-1880. doi: 10.1175/1520-0485(1996)026<1868:anmomp>2.0.co;2
Mahadevan, A., Oliger, J., and Street, R. (1996b). A nonhydrostatic mesoscale ocean model. Part II: numerical implementation. J. Phys. Oceanogr. 26, 1881-1900. doi: 10.1175/1520-0485(1996)026<1881:anmomp>2.0.co;2
Mahadevan, A., and Tandon, A. (2006). An analysis of mechanisms for submesoscale vertical motion at ocean fronts. Ocean Modell. 14, 241-256. doi: 10.1016/j.ocemod.2006.05.006
Mahadevan, A., Tandon, A., and Ferrari, R. (2010). Rapid changes in mixed layer stratification driven by submesoscale instabilities and winds. J. Geophys. Res. 115:C03017. doi: 10.1029/2008jc005203
Mahadevan, A., Thomas, L. N., and Tandon, A. (2008). Comment on "Eddy/Wind Interactions Stimulate Extraordinary Mid-Ocean Plankton Blooms". Science 320, 448b. doi: 10.1126/science.1152111
Malanotte-Rizzoli, P., Artale, V., Borzelli-Eusebi, G. L., Brenner, S., Crise, A., Gacic,M., et al. (2014). Physical forcing and physical/biochemical variability of the Mediterranean Sea: a review of unresolved issues and directions for future research. Ocean Sci. 10, 281-322. doi: 10.5194/os-10-281-2014
Mason, E., Molemaker, J., Shchepetkin, A. F., Colas, F., McWilliams, J. C., and Sangrà, P. (2010). Procedures for offline grid nesting in regional ocean models. Ocean Modell. 35, 1-15. doi: 10.1016/j.ocemod.2010.05.007
Mason, E., Pascual, A., and McWilliams, J. C. (2014). A new sea surface heightbased code for oceanic mesoscale eddy tracking. J. Atmos. Oceanic Technol. 31, 1181-1188. doi: 10.1175/jtech-d-14-00019.1
McGillicuddy, D. J. (2016). Mechanisms of physical-biological-biogeochemical interaction at the oceanic mesoscale. Ann. Rev. Mar. Sci. 8, 125-159. doi: 10.1146/annurevmarine-010814-015606
McGillicuddy, D. J., Anderson, L. A., Bates, N. R., Bibby, T., Buesseler, K. O., Carlson, C. A., et al. (2007). Eddy/Wind Interactions Stimulate Extraordinary Mid-Ocean Plankton Blooms. Science 316, 1021-1026. doi: 10.1126/science.1136256
McGillicuddy, D. J., Anderson, L. A., Doney, S. C., and Maltrud, M. E. (2003). Eddy-driven sources and sinks of nutrients in the upper ocean: results from a 0.1? resolution model of the North Atlantic. Glob. Biogeochem. Cycles 17, 1035. doi: 10.1029/2002gb001987
McWilliams, J. C. (2016). Submesoscale currents in the ocean. Proc. R. Soc. A 472, 20160117. doi: 10.1098/rspa.2016.0117
Morel, A., and André, J.-M. (1991). Pigment distribution and primary production in the western Mediterranean as derived and modeled from coastal zone color scanner observations. J. Geophys. Res. 96, 12685. doi: 10.1029/91jc00788
Morrow, R., Carret, A., Birol, F., Nino, F., Valladeau, G., Boy, F., et al. (2017). Observability of fine-scale ocean dynamics in the northwestern Mediterranean Sea. Ocean Sci. 13, 13-29. doi: 10.5194/os-13-13-2017
Oguz, T., Macias, D., Garcia-Lafuente, J., Pascual, A., and Tintore, J. (2014). Fueling plankton production by a meandering frontal jet: a case study for the Alboran Sea (Western Mediterranean). PLoS ONE 9:e111482. doi: 10.1371/journal.pone.0111482
Oguz, T., Mourre, B., and Tintoré, J. (2016). Upstream control of the frontal jet regulating plankton production in the Alboran Sea (Western Mediterranean). J. Geophys. Res. Oceans 121, 7159-7175. doi: 10.1002/2016jc011667
Ohlmann, J. C.,Molemaker,M. J., Baschek, B., Holt, B.,Marmorino, G., and Smith, G. (2017). Drifter observations of submesoscale flow kinematics in the coastal ocean. Geophys. Res. Lett. 44, 330-337. doi: 10.1002/2016gl071537
Omand, M. M., D'Asaro, E. A., Lee, C. M., Perry, M.-J., Briggs, N., Cetinic, I., et al. (2015).Eddy-driven subduction exports particulate carbon fromthe spring bloom. Science 348, 222. doi: 10.1126/science.1260062
Onken, R., Fiekas, H.-V., Beguery, L., Borrione, I., Funk, A., Hemming, M., et al. (2016). High-resolution observations in the Western Mediterranean Sea: the REP14-MED experiment. Ocean Sci. Discuss. doi: 10.5194/os- 2016-82.
Oschlies, A. (2002). Can eddies make ocean deserts bloom? Glob. Biogeochem. Cycles 16, 53-1-53-11. doi: 10.1029/2001gb001830
Pascual, A., Bouffard, J., Ruiz, S., Buongiorno Nardelli, B., Vidal-Vijande, E., Escudier, R., et al. (2013). Recent improvements in mesoscale characterization of the westernMediterranean Sea: synergy between satellite altimetry and other observational approaches. Sci. Mar. 77, 19-36. doi: 10.3989/scimar.03740.15a
Pascual, A., Faugère, Y., Larnicol, G., and Le Traon, P.-Y. (2006). Improved description of the ocean mesoscale variability by combining four satellite altimeters. Geophys. Res. Lett. 33, L02611. doi: 10.1029/2005GL024633
Pascual, A., Gomis, D., Haney, R. L., and Ruiz, S. (2004). A quasigeostrophic analysis of a meander in the palamós canyon: vertical velocity, geopotential tendency, and a relocation technique. J. Phys. Oceanogr. 34, 2274-2287. doi: 10.1175/1520-0485(2004)034<2274:AQAOAM>2.0.CO;2
Pascual, A., Lana, A., Troupin, C., Ruiz, S., Faugère, Y., Escudier, R., et al. (2015). Assessing SARAL/AltiKa data in the coastal zone: comparisons with HF radar observations. Mar. Geodesy 38, 260-276. doi: 10.1080/01490419.2015.1019656
Pascual, A., Pujol, M.-I., Larnicol, G., Le Traon, P.-Y., and Rio, M.-H. (2007). Mesoscale mapping capabilities of multisatellite altimeter missions: first results with real data in the Mediterranean Sea. J. Mar. Syst. 65, 190-211. doi: 10.1016/j.jmarsys.2004.12.004
Penven, P., Debreu, L., Marchesiello, P., and McWilliams, J. C. (2006). Evaluation and application of the ROMS 1-way embedding procedure to the central california upwelling system. Ocean Modell. 12, 157-187. doi: 10.1016/j.ocemod.2005.05.002
Pujol, M.-I., and Larnicol, G. (2005). Mediterranean sea eddy kinetic energy variability from 11 years of altimetric data. J. Mar. Syst. 58, 121-142. doi: 10.1016/j.jmarsys.2005.07.005
Ramachandran, S., Tandon, A., and Mahadevan, A. (2014). Enhancement in vertical fluxes at a front by mesoscale-submesoscale coupling. J. Geophys. Res. Oceans 119, 8495-8511. doi: 10.1002/2014jc010211
Renault, L., Oguz, T., Pascual, A., Vizoso, G., and Tintore, J. (2012). Surface circulation in the Alborán Sea (Western Mediterranean) inferred from remotely sensed data. J. Geophys. Res. Oceans 117:C08009. doi: 10.1029/2011jc007659
Rio, M.-H., Pascual, A., Poulain, P.-M., Menna, M., Barceló, B., and Tintoré, J. (2014). Computation of a new mean dynamic topography for the Mediterranean Sea from model outputs, altimeter measurements and oceanographic in situ data. Ocean Sci. 10, 731-744. doi: 10.5194/os-10-731-2014
Rodríguez, J., Tintoré, J., Allen, J. T., Blanco, J.M., Gomis,D., Reul, A., et al. (2001). Mesoscale vertical motion and the size structure of phytoplankton in the ocean. Nature 410, 360-363. doi: 10.1038/35066560
Rudnick, D. L. (2016). Ocean research enabled by underwater gliders. Ann. Rev. Mar. Sci. 8, 519-541, doi: 10.1146/annurev-marine-122414-033913
Ruiz, J., Macías, D., Rincón, M. M., Pascual, A., Catalán, I. A., and Navarro, G. (2013). Recruiting at the edge: kinetic energy inhibits anchovy populations in the Western Mediterranean. PLoS ONE 8:e55523. doi: 10.1371/journal.pone.0055523
Ruiz, S., Garau, B., Martínez-Ledesma, M., Casas, B., Pascual, A., Vizoso, G., et al. (2012). New technologies for marine research: five years of glider activities at IMEDEA. Sci. Mar. 76, 261-270. doi: 10.3989/scimar
Ruiz, S., Pascual, A., Casas, B., Poulain, P., Olita, A., Troupin, C., et al. (2015). Report on Operation and Data Analysis from Multiplatform Synoptic Intensive Experiment (AlborEx). Tech. rep., D3.8 Policy-oriented marine Environmental Research in the Southern European Seas. Available onilne at: https://www.researchgate.net/publication/282610625_Report_on_operation_and_data_analysis_from_Multi-Platform_Synoptic_Intensive_Experiment_ALBOREX
Ruiz, S., Pascual, A., Garau, B., Pujol, I., and Tintoré, J. (2009). Vertical motion in the upper ocean from glider and altimetry data. Geophys. Res. Lett. 36:L14607. doi: 10.1029/2009GL038569. L14607
Shcherbina, A. Y., Sundermeyer, M. A., Kunze, E., D'Asaro, E., Badin, G., Birch, D., et al. (2015). The latmix summer campaign: submesoscale stirring in the upper ocean. Bull. Am. Meteorol. Soc. 96, 1257-1279. doi: 10.1175/bams-d-14- 00015.1
Tintoré, J., Gomis, D., Alonso, S., and Parrilla, G. (1991). Mesoscale dynamics and vertical motion in the Alborán Sea. J. Phys. Oceanogr. 21, 811-823. doi: 10.1175/1520-0485(1991)021<0811:mdavmi>2.0.co;2
Tintoré, J., Vizoso, G., Casas, B., Heslop, E., Pascual, A., Orfila, A., et al. (2013). SOCIB: the Balearic Islands Coastal ocean observing and forecasting system responding to science, technology and society needs. Mar. Technol. Soc. J. 47, 101-117. doi: 10.4031/mtsj.47.1.10
Todd, R. E., Gawarkiewicz, G. G., and Owens, W. B. (2013). Horizontal scales of variability over the Middle Atlantic Bight shelf break and continental rise from finescale observations. J. Phys. Oceanog. 43, 222-230. doi: 10.1175/JPO-D-12-099.1
Troupin, C., Pascual, A., Valladeau, G., Pujol, I., Lana, A., Heslop, E., et al. (2015). Illustration of the emerging capabilities of SARAL/AltiKa in the coastal zone using a multi-platform approach. Adv. Space Res. 55, 51-59. doi: 10.1016/j.asr.2014.09.011
Zielinski, O., Llinás, O., Oschlies, A., and Reuter, R. (2002). Underwater light field and its effect on a one-dimensional ecosystem model at station ESTOC, north of the Canary Islands. Deep Sea Research II Top. Stud. Oceanogr. 49, 3529-3542. doi: 10.1016/s0967- 0645(02)00096-6