Bagut ET, Cambier L, Heinen MP, et al. Development of an enzyme-linked immunosorbent assay for serodiagnosis of ringworm infection in cattle. Clin Vaccine Immunol. 2013;20:1150–4.
Calderon RA, Hay RJ. Cell-mediated immunity in experimental murine dermatophytosis. II. Adoptive transfer of immunity to dermatophyte infection by lymphoid cells from donors with acute or chronic infections. Immunology. 1984;53:465–72.
Zahur M, Afroz A, Rashid U, Khaliq S. Dermatomycoses: challenges and human immune responses. Curr Protein Pept Sci. 2014;15:437–44.
Schmid-Wendtner MH, Korting HC. Effective treatment for dermatophytoses of the foot: effect on restoration of depressed cell-mediated immunity. J Eur Acad Dermatol Venereol. 2007;21:1013–8.
Jones HE. Immune response and host resistance of humans to dermatophyte infection. J Am Acad Dermatol. 1993;28:S12–8.
Green F 3rd, Weber JK, Balish E. The thymus dependency of acquired resistance to Trichophyton mentagrophytes dermatophytosis in rats. J Invest Dermatol. 1983;81:31–8.
Calderon RA. Immunoregulation of dermatophytosis. Crit Rev Microbiol. 1989;16:339–68.
Dahl MV, Grando SA. Chronic dermatophytosis: what is special about Trichophyton rubrum? Adv Dermatol. 1994;9:97–109 (discussion 10–1).
Koga T. Immune response in dermatophytosis. Nihon Ishinkin Gakkai Zasshi. 2003;44:273–5.
Mignon B, Tabart J, Baldo A, et al. Immunization and dermatophytes. Curr Opin Infect Dis. 2008;21:134–40.
Woodfolk JA, Platts-Mills TA. The immune response to dermatophytes. Res Immunol. 1998;149:436–45.
Criado PR, Oliveira CB, Dantas KC, et al. Superficial mycosis and the immune response elements. An Bras Dermatol. 2011;86:726–31.
Brasch J, Sterry W. Immunophenotypical characterization of inflammatory cellular infiltrates in tinea. Acta Derm Venereol. 1992;72:345–7.
Szepes E, Magyarlaki M, Battyani Z, Schneider I. Immunohistological characterization of the cellular infiltrate in dermatophytosis. Mycoses. 1993;36:203–6.
Gupta AK, Taborda P, Taborda V, et al. Epidemiology and prevalence of onychomycosis in HIV-positive individuals. Int J Dermatol. 2000;39:746–53.
Smith KJ, Welsh M, Skelton H. Trichophyton rubrum showing deep dermal invasion directly from the epidermis in immunosuppressed patients. Br J Dermatol. 2001;145:344–8.
Luckheeram RV, Zhou R, Verma AD, Xia B. CD4(+)T cells: differentiation and functions. Clin Dev Immunol. 2012;2012:925135.
O’Shea JJ, Paul WE. Mechanisms underlying lineage commitment and plasticity of helper CD4+ T cells. Science. 2010;327:1098–102.
Roy RM, Klein BS. Dendritic cells in antifungal immunity and vaccine design. Cell Host Microbe. 2012;11:436–46.
Zhu J, Paul WE. Peripheral CD4+ T-cell differentiation regulated by networks of cytokines and transcription factors. Immunol Rev. 2010;238:247–62.
Zhu J, Yamane H, Paul WE. Differentiation of effector CD4 T cell populations. Annu Rev Immunol. 2010;28:445–89.
Christie D, Zhu J. Transcriptional regulatory networks for CD4 T cell differentiation. Curr Top Microbiol Immunol. 2014;381:125–72.
Harrington LE, Hatton RD, Mangan PR, et al. Interleukin 17-producing CD4+ effector T cells develop via a lineage distinct from the T helper type 1 and 2 lineages. Nat Immunol. 2005;6:1123–32.
Park H, Li Z, Yang XO, et al. A distinct lineage of CD4 T cells regulates tissue inflammation by producing interleukin 17. Nat Immunol. 2005;6:1133–41.
Patel DD, Kuchroo VK. Th17 cell pathway in human immunity: lessons from genetics and therapeutic interventions. Immunity. 2015;43:1040–51.
Conti HR, Shen F, Nayyar N, et al. Th17 cells and IL-17 receptor signaling are essential for mucosal host defense against oral candidiasis. J Exp Med. 2009;206:299–311.
Deepe GS Jr, Gibbons RS. Interleukins 17 and 23 influence the host response to Histoplasma capsulatum. J Infect Dis. 2009;200:142–51.
Huang W, Na L, Fidel PL, Schwarzenberger P. Requirement of interleukin-17A for systemic anti-Candida albicans host defense in mice. J Infect Dis. 2004;190:624–31.
Zelante T, De Luca A, Bonifazi P, et al. IL-23 and the Th17 pathway promote inflammation and impair antifungal immune resistance. Eur J Immunol. 2007;37:2695–706.
Zelante T, Bozza S, De Luca A, et al. Th17 cells in the setting of Aspergillus infection and pathology. Med Mycol. 2009;47(Suppl 1):S162–9.
Rudner XL, Happel KI, Young EA, Shellito JE. Interleukin-23 (IL-23)-IL-17 cytokine axis in murine Pneumocystis carinii infection. Infect Immun. 2007;75:3055–61.
Wozniak KL, Ravi S, Macias S, et al. Insights into the mechanisms of protective immunity against Cryptococcus neoformans infection using a mouse model of pulmonary cryptococcosis. PLoS ONE. 2009;4:e6854.
Zhang Y, Wang F, Tompkins KC, et al. Robust Th1 and Th17 immunity supports pulmonary clearance but cannot prevent systemic dissemination of highly virulent Cryptococcus neoformans H99. Am J Pathol. 2009;175:2489–500.
Romani L. Immunity to fungal infections. Nat Rev Immunol. 2011;11:275–88.
Koga T, Ishizaki H, Matsumoto T, Hori Y. Cytokine production of peripheral blood mononuclear cells in a dermatophytosis patient in response to stimulation with trichophytin. J Dermatol. 1993;20:441–3.
Koga T, Shimizu A, Nakayama J. Interferon-gamma production in peripheral lymphocytes of patients with tinea pedis: comparison of patients with and without tinea unguium. Med Mycol. 2001;39:87–90.
Miyata T, Fujimura T, Masuzawa M, et al. Local expression of IFN-gamma mRNA in skin lesions of patients with dermatophytosis. J Dermatol Sci. 1996;13:167–71.
Koga T, Duan H, Urabe K, Furue M. Immunohistochemical detection of interferon-gamma-producing cells in dermatophytosis. Eur J Dermatol. 2001;11:105–7.
Venturini J, Alvares AM, Camargo MR, et al. Dermatophyte-host relationship of a murine model of experimental invasive dermatophytosis. Microbes Infect. 2012;14:1144–51.
Neves PC, Rudersdorf RA, Galler R, et al. CD8+ gamma-delta TCR+ and CD4+ T cells produce IFN-gamma at 5-7 days after yellow fever vaccination in Indian rhesus macaques, before the induction of classical antigen-specific T cell responses. Vaccine. 2010;28:8183–8.
Cortez VS, Colonna M. Diversity and function of group 1 innate lymphoid cells. Immunol Lett. 2016;179:19–24.
Billiau A, Matthys P. Interferon-gamma: a historical perspective. Cytokine Growth Factor Rev. 2009;20:97–113.
Slunt JB, Taketomi EA, Woodfolk JA, et al. The immune response to Trichophyton tonsurans: distinct T cell cytokine profiles to a single protein among subjects with immediate and delayed hypersensitivity. J Immunol. 1996;157:5192–7.
Lund A, Bratberg AM, Solbakk IT. In vitro release of interferon-gamma by trichophytin-stimulated whole blood cell cultures from ringworm-vaccinated and control calves experimentally inoculated with Trichophyton verrucosum. Vet Dermatol. 2001;12:75–80.
Baltazar Lde M, Santos PC, Paula TP, et al. IFN-gamma impairs Trichophyton rubrum proliferation in a murine model of dermatophytosis through the production of IL-1beta and reactive oxygen species. Med Mycol. 2014;52:293–302.
De Luca A, Zelante T, D’Angelo C, et al. IL-22 defines a novel immune pathway of antifungal resistance. Mucosal Immunol. 2010;3:361–73.
Korn T, Bettelli E, Oukka M, Kuchroo VK. IL-17 and Th17 cells. Annu Rev Immunol. 2009;27:485–517.
Nakamura T, Nishibu A, Yasoshima M, et al. Analysis of Trichophyton antigen-induced contact hypersensitivity in mouse. J Dermatol Sci. 2012;66:144–53.
Cambier L, Weatherspoon A, Defaweux V, et al. Assessment of the cutaneous immune response during Arthroderma benhamiae and A. vanbreuseghemii infection using an experimental mouse model. Br J Dermatol. 2014;170:625–33.
Grone A. Keratinocytes and cytokines. Vet Immunol Immunopathol. 2002;88:1–12.
Sakuragi Y, Sawada Y, Hara Y, et al. Increased circulating Th17 cell in a patient with tinea capitis caused by Microsporum canis. Allergol Int. 2016;65:215–6.
Brubaker SW, Bonham KS, Zanoni I, Kagan JC. Innate immune pattern recognition: a cell biological perspective. Annu Rev Immunol. 2015;33:257–90.
LeibundGut-Landmann S, Gross O, Robinson MJ, et al. Syk- and CARD9-dependent coupling of innate immunity to the induction of T helper cells that produce interleukin 17. Nat Immunol. 2007;8:630–8.
Levitz SM. Th17 cells bounce off the fungal wall. Cell Host Microbe. 2009;5:311–3.
Plato A, Hardison SE, Brown GD. Pattern recognition receptors in antifungal immunity. Semin Immunopathol. 2015;37:97–106.
Gringhuis SI, Wevers BA, Kaptein TM, et al. Selective C-Rel activation via Malt1 controls anti-fungal T(H)-17 immunity by dectin-1 and dectin-2. PLoS Pathog. 2011;7:e1001259.
Schoenen H, Bodendorfer B, Hitchens K, et al. Cutting edge: mincle is essential for recognition and adjuvanticity of the mycobacterial cord factor and its synthetic analog trehalose-dibehenate. J Immunol. 2010;184:2756–60.
Robinson MJ, Osorio F, Rosas M, et al. Dectin-2 is a Syk-coupled pattern recognition receptor crucial for Th17 responses to fungal infection. J Exp Med. 2009;206:2037–51.
Saijo S, Ikeda S, Yamabe K, et al. Dectin-2 recognition of alpha-mannans and induction of Th17 cell differentiation is essential for host defense against Candida albicans. Immunity. 2010;32:681–91.
Saijo S, Iwakura Y. Dectin-1 and dectin-2 in innate immunity against fungi. Int Immunol. 2011;23:467–72.
Ifrim DC, Quintin J, Courjol F, et al. The role of Dectin-2 for host defense against disseminated candidiasis. J Cytokine Res. 2016;36:267–76.
Mills KH, Dungan LS, Jones SA, Harris J. The role of inflammasome-derived IL-1 in driving IL-17 responses. J Leukoc Biol. 2013;93:489–97.
Glocker EO, Grimbacher B. Mucosal antifungal defence: IL-17 signaling takes centre stage. Immunol Cell Biol. 2011;89:823–5.
LeibundGut-Landmann S, Wuthrich M, Hohl TM. Immunity to fungi. Curr Opin Immunol. 2012;24:449–58.
van de Veerdonk FL, Joosten LA, Netea MG. The interplay between inflammasome activation and antifungal host defense. Immunol Rev. 2015;265:172–80.
Vautier S, MacCallum DM, Brown GD. C-type lectin receptors and cytokines in fungal immunity. Cytokine. 2012;58:89–99.
Vautier S, Sousa Mda G, Brown GD. C-type lectins, fungi and Th17 responses. Cytokine Growth Factor Rev. 2010;21:405–12.
Bourgeois C, Kuchler K. Fungal pathogens—a sweet and sour treat for toll-like receptors. Front Cell Infect Microbiol. 2012;2:142.
Moreira AP, Cavassani KA, Ismailoglu UB, et al. The protective role of TLR6 in a mouse model of asthma is mediated by IL-23 and IL-17A. J Clin Invest. 2011;121:4420–32.
Haley K, Igyarto BZ, Ortner D, et al. Langerhans cells require MyD88-dependent signals for Candida albicans response but not for contact hypersensitivity or migration. J Immunol. 2012;188:4334–9.
Wuthrich M, Ersland K, Sullivan T, et al. Fungi subvert vaccine T cell priming at the respiratory mucosa by preventing chemokine-induced influx of inflammatory monocytes. Immunity. 2012;36:680–92.
Creagh EM, O’Neill LA. TLRs, NLRs and RLRs: a trinity of pathogen sensors that co-operate in innate immunity. Trends Immunol. 2006;27:352–7.
Hardison SE, Brown GD. C-type lectin receptors orchestrate antifungal immunity. Nat Immunol. 2012;13:817–22.
Dennehy KM, Ferwerda G, Faro-Trindade I, et al. Syk kinase is required for collaborative cytokine production induced through Dectin-1 and Toll-like receptors. Eur J Immunol. 2008;38:500–6.
Dennehy KM, Willment JA, Williams DL, Brown GD. Reciprocal regulation of IL-23 and IL-12 following co-activation of Dectin-1 and TLR signalling pathways. Eur J Immunol. 2009;39:1379–86.
van de Veerdonk FL, Gresnigt MS, Kullberg BJ, et al. Th17 responses and host defense against microorganisms: an overview. BMB Rep. 2009;42:776–87.
Li Y, Chen J, Wan MJ, et al. The immune response of human keratinocytes to Trichophyton rubrum conidia is partially mediated by toll-like receptor-2, 4, dectin-1 and cytokines. Nan Fang Yi Ke Da Xue Xue Bao. 2011;31:678–81.
Cambier LC, Heinen MP, Bagut ET, et al. Overexpression of TLR-2 and TLR-4 mRNA in feline polymorphonuclear neutrophils exposed to Microsporum canis. Vet Dermatol. 2016;27:78-e22.
Brasch J, Morig A, Neumann B, Proksch E. Expression of antimicrobial peptides and toll-like receptors is increased in tinea and pityriasis versicolor. Mycoses. 2014;57:147–52.
Huang XZ, Liang PP, Ma H, et al. Effect of culture supernatant derived from Trichophyton rubrum grown in the nail medium on the innate immunity-related molecules of HaCaT. Chin Med J (Engl). 2015;128:3094–100.
Sato K, Yang XL, Yudate T, et al. Dectin-2 is a pattern recognition receptor for fungi that couples with the Fc receptor gamma chain to induce innate immune responses. J Biol Chem. 2006;281:38854–66.
Cambier L, Mathy A, Baldo A, et al. Feline polymorphonuclear neutrophils produce pro-inflammatory cytokines following exposure to Microsporum canis. Vet Microbiol. 2013;162:800–5.
Mao L, Zhang L, Li H, et al. Pathogenic fungus Microsporum canis activates the NLRP3 inflammasome. Infect Immun. 2014;82:882–92.
Yoshikawa FS, Ferreira LG, de Almeida SR. IL-1 signaling inhibits Trichophyton rubrum conidia development and modulates the IL-17 response in vivo. Virulence. 2015;6:449–57.
Yoshikawa FS, Yabe R, Iwakura Y, et al. Dectin-1 and Dectin-2 promote control of the fungal pathogen Trichophyton rubrum independently of IL-17 and adaptive immunity in experimental deep dermatophytosis. Innate Immun. 2016;22:316–24.
Gaffen SL. An overview of IL-17 function and signaling. Cytokine. 2008;43:402–7.
Onishi RM, Gaffen SL. Interleukin-17 and its target genes: mechanisms of interleukin-17 function in disease. Immunology. 2010;129:311–21.
Espinosa V, Rivera A. Cytokines and the regulation of fungus-specific CD4 T cell differentiation. Cytokine. 2012;58:100–6.
Kolls JK, Khader SA. The role of Th17 cytokines in primary mucosal immunity. Cytokine Growth Factor Rev. 2010;21:443–8.
Fujita H. The role of IL-22 and Th22 cells in human skin diseases. J Dermatol Sci. 2013;72:3–8.
Eyerich S, Eyerich K, Pennino D, et al. Th22 cells represent a distinct human T cell subset involved in epidermal immunity and remodeling. J Clin Invest. 2009;119:3573–85.
Heddergott C, Bruns S, Nietzsche S, et al. The Arthroderma benhamiae hydrophobin HypA mediates hydrophobicity and influences recognition by human immune effector cells. Eukaryot Cell. 2012;11:673–82.
Hay RJ, Calderon RA, Collins MJ. Experimental dermatophytosis: the clinical and histopathologic features of a mouse model using Trichophyton quinckeanum (mouse favus). J Invest Dermatol. 1983;81:270–4.
Calderon RA, Hay RJ. Fungicidal activity of human neutrophils and monocytes on dermatophyte fungi, Trichophyton quinckeanum and Trichophyton rubrum. Immunology. 1987;61:289–95.
Jensen JM, Pfeiffer S, Akaki T, et al. Barrier function, epidermal differentiation, and human beta-defensin 2 expression in tinea corporis. J Invest Dermatol. 2007;127:1720–7.
Fritz P, Beck-Jendroschek V, Brasch J. Inhibition of dermatophytes by the antimicrobial peptides human beta-defensin-2, ribonuclease 7 and psoriasin. Med Mycol. 2012;50:579–84.
Lopez-Garcia B, Lee PH, Gallo RL. Expression and potential function of cathelicidin antimicrobial peptides in dermatophytosis and tinea versicolor. J Antimicrob Chemother. 2006;57:877–82.
Kawai M, Yamazaki M, Tsuboi R, et al. Human beta-defensin-2, an antimicrobial peptide, is elevated in scales collected from tinea pedis patients. Int J Dermatol. 2006;45:1389–90.
Ferwerda B, Ferwerda G, Plantinga TS, et al. Human dectin-1 deficiency and mucocutaneous fungal infections. N Engl J Med. 2009;361:1760–7.
Glocker EO, Hennigs A, Nabavi M, et al. A homozygous CARD9 mutation in a family with susceptibility to fungal infections. N Engl J Med. 2009;361:1727–35.
Engelhardt KR, Grimbacher B. Mendelian traits causing susceptibility to mucocutaneous fungal infections in human subjects. J Allergy Clin Immunol. 2012;129:294–305.
Lanternier F, Pathan S, Vincent QB, et al. Deep dermatophytosis and inherited CARD9 deficiency. N Engl J Med. 2013;369:1704–14.
Lanternier F, Barbati E, Meinzer U, et al. Inherited CARD9 deficiency in 2 unrelated patients with invasive Exophiala infection. J Infect Dis. 2015;211:1241–50.
Wang X, Wang W, Lin Z, et al. CARD9 mutations linked to subcutaneous phaeohyphomycosis and TH17 cell deficiencies. J Allergy Clin Immunol. 2014;133(905–8):e3.
Wang X, van de Veerdonk FL. When the fight against fungi goes wrong. PLoS Pathog. 2016;12:e1005400.
Alves de Medeiros AK, Lodewick E, Bogaert DJ, et al. Chronic and invasive fungal infections in a family with CARD9 deficiency. J Clin Immunol. 2016;36:204–9.
Drewniak A, Gazendam RP, Tool AT, et al. Invasive fungal infection and impaired neutrophil killing in human CARD9 deficiency. Blood. 2013;121:2385–92.
Grumach AS, de Queiroz-Telles F, Migaud M, et al. A homozygous CARD9 mutation in a Brazilian patient with deep dermatophytosis. J Clin Immunol. 2015;35:486–90.