Böhme, Béatrice ; Université de Liège > Dép. clinique des animaux de compagnie et des équidés (DCA) > Chirurgie et clinique chirurgicale des petits animaux
Mengoni, Marlène ; Université de Liège > Département d'aérospatiale et mécanique > Département d'aérospatiale et mécanique
d'Otreppe, Vinciane
Balligand, Marc ; Université de Liège > Dép. clinique des animaux de compagnie et des équidés (DCA) > Chirurgie et clinique chirurgicale des petits animaux
Ponthot, Jean-Philippe ; Université de Liège > Département d'aérospatiale et mécanique > LTAS-Mécanique numérique non linéaire
Language :
English
Title :
Prediction of the mechanical response of canine humerus to three-point bending using subject-specific finite element modelling
Publication date :
2016
Journal title :
Proceedings of the Institution of Mechanical Engineers. Part H, Journal of Engineering in Medicine
ISSN :
0954-4119
Publisher :
Mechanical Engineering Publications Ltd., London, United Kingdom
Kumar K, Mogha IV, Aithal HP, et al. Occurrence and pattern of long bone fractures in growing dogs with normal and osteopenic bones. J Vet Med A Physiol Pathol Clin Med 2007; 54: 484-490.
Miller CW, Sumner-Smith G, Sheridan C, et al. Using the Unger system to classify 386 long bone fractures in dogs. J Small Anim Pract 1998; 39: 390-393.
Voss K, Kull MA, Hässig M, et al. Repair of long-bone fractures in cats and small dogs with the Unilock mandible locking plate system. Vet Comp Orthop Traumatol 2009; 5: 398-405.
Ayyappan S, Shafiuzama M, Ganesh TN, et al. A clinical study on external fixators for long bone fracture management in dogs. Indian J Vet Surg 2009; 30: 90-92.
Rahal C, Otoni C, Pereira O, et al. Synthesis Pengo System plates for the treatment of long-bone diaphyseal fractures in dogs. Vet Comp Orthop Traumatol 2008; 21: 59-63.
Dueland R, Johnson K, Roe S, et al. Interlocking nail treatment of diaphyseal long-bone fractures in dogs. J Am Vet Med Assoc 1999; 214: 59-66.
Palierne S, Asimus E, Mathon D, et al. Geometric analysis of the proximal femur in a diverse sample of dogs. Res Vet Sci 2006; 80: 243-252.
Dvoák M, Neas A, Zatloukal J., Complications of long bone fracture healing in dogs: functional and radiological criteria for their assessment. Acta Vet Brno 2000; 69: 107-114.
Jackson LC, Pacchiana PD., Common complications of fracture repair. Clin Tech Small Anim Pract 2004; 19: 168-179.
Blake CA, Boudrieau RJ, Torrance BS, et al. Single cycle to failure in bending of three standard and five locking plates and plate constructs. Vet Comp Orthop Traumatol 2011; 24: 408-417.
Zahn K, Frei R, Wunderle D, et al. Mechanical properties of 18 different AO bone plates and the clamp-rod internal fixation system tested on a gap model construct. Vet Comp Orthop Traumatol 2008; 21: 185-194.
Nassiri M, MacDonald B, O'Byrne JM., Locking compression plate breakage and fracture non-union: a finite element study of three patient-specific cases. Eur J Orthop Surg Tr 2012; 22: 275-281.
Oh J-K, Sahu D, Ahn YH, et al. Effect of fracture gap on stability of compression plate fixation: a finite element study. J Orthop Res 2010; 28: 462-467.
Vajgel A, Camargo IB, Willmersdorf RB, et al. Comparative finite element analysis of the biomechanical stability of 2.0 fixation plates in atrophic mandibular fractures. J Oral Maxillofac Surg 2013; 71: 335-342.
Bessho M, Ohnishi I, Matsumoto T, et al. Prediction of proximal femur strength using a CT-based nonlinear finite element method: differences in predicted fracture load and site with changing load and boundary conditions. Bone 2009; 45: 226-231.
Hambli R, Bettamer A, Allaoui S., Finite element prediction of proximal femur fracture pattern based on orthotropic behaviour law coupled to quasi-brittle damage. Med Eng Phys 2012; 34: 202-210.
Tsouknidas A, Anagnostidis K, Maliaris G, et al. Fracture risk in the femoral hip region: a finite element analysis supported experimental approach. J Biomech 2012; 45: 1959-1964.
Hambli R, Allaoui S., A robust 3D finite element simulation of human proximal femur progressive fracture under stance load with experimental validation. Ann Biomed Eng 2013; 41: 2515-2527.
Autefage A, Palierne S, Charron C, et al. Effective mechanical properties of diaphyseal cortical bone in the canine femur. Vet J 2012; 194: 202-209.
Duprey S, Bruyere K, Verriest J-P., Experimental and simulated flexion tests of humerus. Int J Crashworthines 2007; 12: 153-158.
Ridha H, Thurner PJ., Finite element prediction with experimental validation of damage distribution in single trabeculae during three-point bending tests. J Mech Behav Biomed Mater 2013; 27: 94-106.
Varghese B, Short D, Penmetsa R, et al. Computed-tomography-based finite-element models of long bones can accurately capture strain response to bending and torsion. J Biomech 2011; 44: 1374-1379.
Trabelsi N, Yosibash Z, Wutte C, et al. Patient-specific finite element analysis of the human femur: a double-blinded biomechanical validation. J Biomech 2011; 44: 1666-1672.
Viceconti M, Olsen S, Nolte L-P, et al. Extracting clinically relevant data from finite element simulations. Clin Biomech 2005; 20: 451-454.
Kalender WA, Suess C., A new calibration phantom for quantitative computed tomography. Med Phys 1987; 14: 863-866.
Austman RL, Milner JS, Holdsworth DW, et al. The effect of the density-modulus relationship selected to apply material properties in a finite element model of long bone. J Biomech 2008; 41: 3171-3176.
Fedorov A, Beichel R, Kalpathy-Cramer J, et al. 3D Slicer as an image computing platform for the Quantitative Imaging Network. Magn Reson Imaging 2012; 30: 1323-1341.
D'Otreppe V, Boman R, Ponthot J-P., Generating smooth surface meshes from multi-region medical-images. Int J Numer Method Biomed Eng 2012; 28: 642-660.
Sullivan JF., Technical physics. New York: Wiley, 1988.
Reilly DT, Burstein AH., The elastic and ultimate properties of compact bone tissue. J Biomech 1975; 8: 393-405.
Wirtz DC, Schiffers N, Pandorf T, et al. Critical evaluation of known bone material properties to realize anisotropic FE-simulation of the proximal femur. J Biomech 2000; 33: 1325-1330.
Li S, Demirci E, Silberschmidt VV., Variability and anisotropy of mechanical behavior of cortical bone in tension and compression. J Mech Behav Biomed Mater 2013; 21: 109-120.
Bayraktar HH, Morgan EF, Niebur GL, et al. Comparison of the elastic and yield properties of human femoral trabecular and cortical bone tissue. J Biomech 2004; 37: 27-35.
Verhulp E, Van Rietbergen B, Huiskes R., Load distribution in the healthy and osteoporotic human proximal femur during a fall to the side. Bone 2008; 42: 30-35.
Verim O, Tasgetiren S, Er MS, et al. Anatomical evaluation and stress distribution of intact canine femur. Int J Med Robot 2013; 9: 103-108.
Boman R, Ponthot J-P., Efficient ALE mesh management for 3D quasi-Eulerian problems. Int J Numer Meth Eng 2012; 92: 857-890.
Jeunechamps P-P, Ponthot J-P., An efficient 3D implicit approach for the thermomechanical simulation of elastic-viscoplastic materials submitted to high strain rate and damage. Int J Numer Meth Eng 2013; 94: 920-960.
Mengoni M, Ponthot JP., A generic anisotropic continuum damage model integration scheme adaptable to both ductile damage and biological damage-like situations. Int J Plasticity 2015; 66: 46-70.
Mengoni M, Voide R, de Bien C, et al. A non-linear homogeneous model for bone-like materials under compressive load. Int J Numer Method Biomed Eng 2012; 28: 273-287.
Helgason B, Taddei F, Pálsson H, et al. A modified method for assigning material properties to FE models of bones. Med Eng Phys 2008; 30: 444-453.
Taddei F, Schileo E, Helgason B, et al. The material mapping strategy influences the accuracy of CT-based finite element models of bones: an evaluation against experimental measurements. Med Eng Phys 2007; 29: 973-979.
Zeng X, Wen S, Li M, et al. Estimating Young's modulus of materials by a new three-point bending method. Adv Mater Sci Eng 2014; 2014: e189423.
Doblaré M, Garcla JM, Gómez MJ., Modelling bone tissue fracture and healing: a review. Eng Fract Mech 2004; 71: 1809-1840.
Burkhart TA, Quenneville CE, Dunning CE, et al. Development and validation of a distal radius finite element model to simulate impact loading indicative of a forward fall. Proc IMechE, Part H: J Engineering in Medicine 2014; 228: 258-271.
Peng L, Bai J, Zeng X, et al. Comparison of isotropic and orthotropic material property assignments on femoral finite element models under two loading conditions. Med Eng Phys 2006; 28: 227-233.
Yang H, Ma X, Guo T., Some factors that affect the comparison between isotropic and orthotropic inhomogeneous finite element material models of femur. Med Eng Phys 2010; 32: 553-560.