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Prediction of the mechanical response
of canine humerus to three-point
bending using subject-specific finite
element modelling
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Abstract
Subject-specific finite element models could improve decision making in canine long-bone fracture repair. However, it
preliminary requires that finite element models predicting the mechanical response of canine long bone are proposed
and validated. We present here a combined experimental–numerical approach to test the ability of subject-specific finite
element models to predict the bending response of seven pairs of canine humeri directly from medical images. Our
results show that bending stiffness and yield load are predicted with a mean absolute error of 10.1% (65.2%) for the
14 samples. This study constitutes a basis for the forthcoming optimization of canine long-bone fracture repair.
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Introduction

Long-bone fracture constitutes a common reason for
medical consultation within veterinary orthopaedic ser-
vices,1,2 as emphasized by the substantial recent litera-
ture concerning the choice of adapted implants.3–6

Associated surgical interventions are often complex
given that each fracture has its own particularities.
Canine bone fracture repair differs from the human
case in the sense that (1) the physiological characteris-
tics and morphology of the injured bones in animals
vary considerably;7 (2) the animal is not able to limit its
activity during the post-operative period, which may
lead to premature overloading; and (3) the surgeon is
often confronted to cost limitations concerning ortho-
paedic material. As a result, the treatment of such frac-
tures (implant type, dimension, location, etc.) depends
to some extent on the surgeon’s experience, who tries to
find a trade-off between a minimum stiffness required
for fracture stabilization and a sufficient flexibility
essential for bone remodelling. Although available
handbooks guide the surgeon in the choice of a suited
treatment for each particular fracture, they are still
based on empirical knowledge, and there is a lack of
studies assessing the effect of different treatment types

on the biomechanical properties of the reconstructed
bone. This insufficient knowledge may partly explain
the complications that are still frequent in the field of
canine fracture repair.8,9

In order to improve the surgical procedure, ex vivo
experiments10,11 as well as numerical biomechanical
studies12–14 have been reported. Indeed, numerical
approaches, such as finite element (FE) modelling, may
enable to evaluate non-invasively the effect of various
implants or their combination on the same bone sam-
ple. However, these FE studies are often based on sim-
plistic bone models (i.e. elastic, linear, homogeneous
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4Institute of Medical and Biological Engineering, School of Mechanical

Engineering, University of Leeds, Leeds, UK

Corresponding author:

Cédric P Laurent, CNRS, LEMTA, UMR 7563, Université de Lorraine, 2
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cortical and trabecular tissues, etc.). A milestone in
delivering relevant data in a subject-specific approach
consists of including the bone external geometry and
heterogeneous material properties from the informa-
tion available in computed tomography (CT) images.
Such subject-specific FE approaches have been devel-
oped in human long-bone analysis and satisfyingly pre-
dicted the failure risk in proximal femur.15–18 However,
available studies in human have often led to moderately
accurate results as far as the prediction of the global
biomechanical response of long bones are concerned,
probably due to accumulating inherent approximations
throughout the model generation. Particularly, it is not
clear whether the consideration of density-dependent
material properties leads to better results than the mod-
elling of long bone with two materials (trabecular and
cortical tissues) separated from a density criterion. The
interest of considering anisotropic material properties
is also not clear. Moreover, if one wants to extend these
subject-specific FE models to canine bone, a supple-
mentary difficulty will come from the variability of
bone material properties from one breed to another,19

and from the absence of data concerning relationships
between CT information and bone material properties
for dogs.

Such FE models are usually validated using ex vivo
mechanical tests such as bending,20,21 torsion,22 or com-
pression.17,23 These combined experimental–numerical
approaches require that a particular attention is paid to
the application of similar boundary conditions (BC),
such as load application and displacement restriction,
in the experimental and computational setups.24

In the present contribution, the hypothesis was that
subject-specific FE models are able to predict the glo-
bal mechanical response of canine long bones to three-
point bending tests. The aims of this work were there-
fore (1) to provide a direct subject-specific validation
of canine long-bone FE models including a novel

density–elasticity law and (2) to assess the requirements
for the bone material model to replicate measured ex
vivo behaviour.

Material and methods

A combined experimental and computational approach
was developed to validate the FE models with ex vivo
three-point bending data, that is, overall load/deflection
behaviour and local fracture patterns. All dynamic FE
analyses were performed using the in-house non-linear
implicit FE code Metafor (metafor.ltas.ulg.ac.be).

Specimen preparation, imaging, and mechanical
testing

Eight pairs of canine humeri were initially harvested
from adult dogs euthanized for reasons unrelated to
this study. After harvesting, one dog (i.e. one pair of
humeri) was excluded from this study due to the obser-
vation of severe knee arthrosis. Dog weights finally
ranged from 19 to 39kg. Soft tissues were carefully
removed and samples were wrapped in saline-soaked
sponges and stored at 20 �C. Samples were prepared
for three-point bending mechanical tests at room tem-
perature. In order to accurately control the location of
the bones within the custom bending stand and to
restrict rotations around the bone diaphysis axis during
the bending tests, the epiphyses were embedded into
603 603 60mm3 moulds made of two-component
polymeric resin (Motip�, MOTIP DUPLI B.V,
Wolvega, Nederland) (Figure 1). A particular attention
was paid to define resin moulds’ orientation with
respect to the bone sample position in a reproducible
way. First, we used the origin of the medial and lateral
collateral ligaments as anatomical landmarks to define
a reference axis. Then, the distal resin mould was cre-
ated in such a way that this anatomical reference axis

Figure 1. Experimental and simulated bending test on canine humerus: (a) preparation of bone samples using a custom jig to align
resin moulds, (b) bone samples embedded in resin moulds were mounted in a custom bending stand, and (c) the bending tests were
simulated by simplifying the resin moulds with single hexahedrons linked to the bone surface (red dots) via artificial springs. A
sticking contact condition was considered between the bending tool and the bone surface (green dots), while contact–friction
interaction was considered between the resin moulds and the bending stand (blue cylinders).
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was parallel to two surfaces of the resin block (namely,
its cranio-caudal and proximal–distal surfaces). The
second mould was perfectly aligned with the first one,
using custom-made jig (Figure 1(a)).

The samples were imaged using a CT scanner
(Siemens SOMATOM at 120kVp) with a slice thick-
ness of 0.75mm and a spatial resolution of 0.1445mm.
A phantom (Siemens BMD calibration phantom25) was
used to calibrate the bone densities with respect to the
Hounsfield Units (HU) issued from the CT acquisi-
tion.18,26 Particular attention was paid to keep the sam-
ples packed in saline-soaked wraps throughout the
procedure in order to avoid tissue dehydration. The fol-
lowing relation was obtained

r ¼ 4:93323 10�4HUþ 0:9839 ð1Þ

Samples were placed on a custom adjustable bending
stand (Figure 1(b)) made of two steel half-cylinders.
The cylinders’ positions were adjusted so that they were
in contact with the middle of each resin mould in the
axial direction of the bone. The bending tool consisted
in a cylindrical punch located longitudinally at half the
distance between the two resin moulds. The stand was
mounted in a 100-kN servo-hydraulic testing machine
(load cell: XForce HP 5kN; Zwick/Roell, Ulm,
Germany). A medial–lateral displacement was applied
to the bending tool at a speed of 0.2mms21 after a pre-
load of 50N. The samples were tested until complete
fracture. Tool displacement (hereafter called deflection)
and vertical force (i.e. shear force) were recorded. Two
high-speed cameras (Vision Research v7.3) recording
1000 frames per second were used in order to visualize
the fracture onset.

Finite element modelling

Each tested sample was modelled with a subject-specific
approach. The geometry of the bone was built from the
three-dimensional (3D) CT data using 3D Slicer27

(http://www.slicer.org) for segmentation and a dedi-
cated in-house algorithm28 for the generation of smooth
multi-region surface meshes. The bone volume mesh
was obtained using TetGen (WIAS, Berlin, Germany),
generating linear tetrahedra. Final mesh size was issued
from a mesh dependency analysis reported hereafter.

The resin moulds were not meshed in the FE model
but considered as single deformable hexahedrons
whose coordinates were automatically computed from
the boundaries of resin moulds in the surface mesh
(Figure 1(b)). Resin was considered linear elastic, with
an elastic modulus of 900MPa characterized from pre-
liminary experiments. Elements were assigned a density
issued from the calibration phantom and equal to 1 g
cm23 for resin. The interaction between the bone and
the resin moulds was modelled using springs (arbitrary
stiffness of 100Nmm21) linking the hexahedron nodes
with each of the bone surface nodes located within the
resin moulds (Figure 1(b)) in order to constrain the

relative displacement between bone and resin. This
numerical representation of the resin blocks is totally
equivalent to a penalty formulation in contact algo-
rithms with bilateral restrictions to enforce the continu-
ity of the displacement field at the interface between
bone and resin. The proximal resin mould was
restrained in the cranio-caudal direction.

The bending stand was modelled as two rigid half-
cylinders located longitudinally at the middle of each
resin moulds. The frictional contact condition between
the resin moulds and the bending stand was modelled
with a Coulomb’s law, with static and dynamic friction
coefficients set at 0.7, corresponding to a dry static con-
tact between steel and steel.29 This value was chosen
due to the lack of published value for resin–steel con-
tact. Each half-cylinders of the bending stand were
restrained in their 6 degrees of freedom.

The bending tool was modelled as a rigid half-
cylinder located, as marked experimentally, at half the
distance between the two resin moulds. Displacement
was applied to the tool in the medial–lateral direction.
Contact between the bending tool and the bone surface
was modelled as sticking contact.

A sensitivity analysis was performed analysing the
effect of the resin properties, the stiffness of the springs
used to attach bone to resin blocks, and the friction
coefficient between resin and stand on the predicted
bone stiffness and yield load. Load–deflection curves
were obtained as the sum of the medial–lateral compo-
nent of the contact force and the tool displacement at
each time step. The experimental preload was mimicked
by excluding the initial forces below 50N from the
simulation results.

For each sample, user interaction was only needed
for the image segmentation step. To avoid user varia-
tion, all other steps of the model creation and analysis
were automated, based on the size of the samples
extracted from the segmented data. All FE analyses
were performed using local high-performance comput-
ing (HPC) facilities (parallel computation on 144
cores).

Bone material models

Three different materials models were considered for
the bone: a density-dependent transversely isotropic
model, a density-dependent isotropic model, and a two-
material isotropic model (one material model for corti-
cal bone and one for trabecular bone).

For the density-dependent models, material para-
meters were mapped against the HU values from the
CT scans starting from equation (1). The following
mapping procedure was applied: (1) for each mesh ele-
ment, the smallest rectangular box that embraced the
tetrahedron was defined; (2) for each voxel included
within this box, material properties (see the following
section) were computed from the density computed
from the HU field; and (3) material properties were
averaged on this box and assigned to the mesh element.
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A particular attention was paid to reduce the partial
volume artefacts: to this end, we first separated the
mesh elements that had at least one point belonging to
the bone surface (outer cells) from the other mesh ele-
ments (inner cells). Each outer cell was then associated
to its closest inner cell and was assigned the HU value
of its associated inner cell when it was higher than its
own HU value. This procedure significantly reduced
the partial volume artefact, provided that the bone cor-
tical wall was described by a sufficient number of mesh
elements, that is, that the mesh was sufficiently dense.

It is known that the properties of canine bone
depend on dog mass.19 Therefore, a density–elasticity
relationship had to be derived for canine bone. It
would indeed not be justified to use a unique density–
elasticity relationship determined from human bone.
Published experimental data19 reported the elastic
moduli of canine cortical bone as a function of dog breed:
13.3GPa (dog mass=5kg), 14.9GPa (dog mass=
12kg), 16GPa (dog mass=25kg), and 16.3GPa (dog
mass=50kg). Comparing that data to an average
reported elastic modulus of 17.9GPa for human cortical
bone,30 the following relation between human data and
canine data was extrapolated (using a common mean-
square method)

Ecanine rð Þ ¼ Ehuman rð Þ3 0:3 exp �5=mð Þ þ 0:64ð Þ ð2Þ

where m is the dog mass. This relation is illustrated in
Figure 2 and assumes that bone properties depend only
on dog mass and not on the breed.

This canine-to-human relation was used to weight
existing density–elasticity relationships validated for
human data. For the density-dependent transversely
isotropic model, bone was considered as an elastoplas-
tic material without distinction between cortical and
trabecular tissues (except for density). The elastic part
of the model was built from relation (2) and using an

orthotropic elasticity–density relationship for human
bone in tension31

El ¼ 2065r3:09 Glt ¼ 0:29El

Et ¼ 2314r1:57 Gtt ¼ 0:2El

ð3Þ

where El and Et are the elastic moduli (MPa) in the
longitudinal and transverse directions, respectively; Glt

and Gtt are the shear moduli (MPa); and r (g cm23) is
the apparent density issued from CT calibration. These
relations valid for human bone were weighted using
relation (2) in order to model canine bone. Asymmetric
elastic material properties were assumed by considering
that the elastic modulus was 6% higher in compression
than in tension.32

The global longitudinal direction was automatically
computed for each sample, based only on the
central third of the bone (representing the diaphysis,
see Figure 3). The mesh nodes belonging to the bone
surface and included in this part were selected and used
to compute a least-square line defined as the longitudi-
nal direction. The transverse direction was defined

Figure 2. Determined relation between canine bone properties as a function of mass based on existing data19 and human bone
properties.

Figure 3. Calculation of orthotropic axes (longitudinal and
transverse for a transversely isotropic model) from the central
third of the bone. Longitudinal direction is defined as the
computed least-square line of the mesh nodes included in the
bone diaphysis surface.
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perpendicularly to this direction, in a plane containing
the tool displacement vector.

The yield surface was defined through a von Mises
criterion with linear isotropic hardening. The initial
yield stress was obtained from the yield strain of 0.73%
reported for human cortical bone33 and the mean elas-
tic modulus (defined as the average of longitudinal and
transverse moduli) following the relation

sy ¼
0:0073 ðEl þ EtÞ

2
ð4Þ

The role of the longitudinal stress was therefore con-
sidered predominant in the bone yield. Post-yield hard-
ening was set as 5% of the initial, density-dependent,
mean elastic moduli.34

The same procedure was applied for the density-
dependent isotropic model. The unique Young’s modulus
was defined as the mean of the computed longitudinal and
transverse modulus for a given bone density (relation (3))
weighted by the correction coefficients given in relation (2).
Yield was modelled identically to the previous model.

For the two-material isotropic model, trabecular and
cortical canine tissues were modelled with Young’s modulus
of 750MPa and 15GPa, respectively, and a Poisson’s ratio
of 0.3.35 Cortical and trabecular tissues were separated
using a threshold in terms of HU values. Cortical tissue was
assumed for HU values superior to either 600 or 400HU in
order to assess the sensitivity to this parameter. Yield was
modelled identically to the previous models.

Statistical analysis

For each tested bone, bending stiffness (least-square
linear regression of the linear part of force–deflection
curve passing through the origin) and yield load (inter-
section between a parallel to this linear regression with
a 0.1mm offset and the force–deflection curve) were
extracted and compared between the experimental and
computational data.

In order to emphasize the statistical significance of
our model, we performed various statistical analyses
from our experimental results (14 samples from 7 dogs)
and our numerical results (56 models: 14 density-depen-
dent transversely isotropic models, 14 density-depen-
dent isotropic models, 14 two-material isotropic models
with a segmentation threshold of 400HU, and 14 others
ith a segmentation threshold of 600HU). Analysis of
variance (ANOVA) was used as the common test to
quantify the difference between two sets of data, with a
default p value of 0.01 (when not detailed).

Results

Experimental results

Experimental results for the seven pairs of humeri are
represented in Figure 4. A large intra- and inter-
variability was observed: as an example, a mean differ-
ence of 14.6% in stiffness between the left and right
humerus of the same dog. Left and right humeri of the
same dog were, however, not different (both in terms
of stiffness and yield load) in the sense of an ANOVA
analysis. The coefficient of variation (ratio between
standard deviation and mean) of the stiffness is equal
to 20.2%. The data showed a weak correlation between
dog mass and mean humerus stiffness (correlation coef-
ficient of 0.65). While the failure was immediate for six
samples, it was more progressive for the others, and
therefore, no clear fracture pattern was visible.

Computational results

The meshes resulting from the reconstruction of the
segmented CT images together with the mapping pro-
cedure are represented in Figure 5 for all bone samples.
Bone mesh made of approximately 300,000 tetrahedral
linear elements (60,000 nodes) led to a relative differ-
ence of 2.5% on strain energy density (SED) and 1.4%
on stiffness compared to the values obtained for

Figure 4. (Left) Bending responses of the 14 humeri and (right) bending stiffness of the seven pairs of humeri, emphasizing the
large inter- and intra-variability of measured responses.
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160,000 nodes. The results of the sensitivity study for
one humerus are reported in Table 1. These data
emphasize that the simulation results are not sensitive
to resin properties, indicating that the resin does not
deform substantially during the bending test.
Moreover, the simulation results are very slightly sensi-
tive to the stiffness of springs used to attach bone to
resin (2% of deviation for a variation of five orders of
magnitude). A stiffness of 100Nmm21 (i.e. of the same
order of magnitude than the bone bending stiffness)
has been consequently selected for every simulations.
However, this sensitivity study emphasizes that the fric-
tion coefficient does have an effect on predicted stiff-
ness and yield load. A friction coefficient of 0.7 has
been chosen for the simulations due to the lack of exist-
ing data, as long as such data are difficult to measure
experimentally.

For the density-dependent transversely isotropic
model of the 14 samples, the bending stiffness was pre-
dicted with a maximum error of 21.7% (absolute value
of the mean error=10.1%6 5.2%). The yield load
was predicted with an absolute value of the mean error
11%6 11.3%, but was unsatisfyingly predicted for one
sample over the 14 samples (maximum error=43.5%,

see Figure 6). Correlation coefficients between pre-
dicted and measured values were 0.86 for stiffness and
0.74 for yield load. A Bland–Altman representation of
the simulation results obtained with this model has also
been provided (Figure 7): it clearly illustrates the good
prediction ability of this model. However, this represen-
tation clearly emphasizes that the values of bending
stiffness and yield load are badly predicted for one sam-
ple (6 right).

Results of the different models were confronted to
experimental results in the sense of ANOVA statistical
tests, and the p values issued from these tests are gath-
ered in Table 2, under the null hypothesis that experi-
mental and simulations results have the same mean (i.e.
if the p value is near to zero, experimental and simula-
tion results are significantly different). From this analy-
sis, it is clear that the density-dependent transversely
isotropic model is the most predictive model among the
four different models tested, and especially compared
to the density-dependent isotropic model, as illustrated
in Figure 8. Surprisingly, the computational results are
better in the case of the two-material isotropic models
(no matter the segmentation threshold) than in the case
of density-dependent isotropic models.

Results of the FE simulations for the two-material
isotropic model are represented in Figure 9, with trabe-
cular and cortical tissues being separated either from
HU values of 400 or 600HU in order to quantify the
sensitivity of the bending response to this threshold.
There is no statistical difference between the two thresh-
old values used to separate cortical from trabecular tis-
sue in the case of two-material models.

Discussion

Model accuracy

A FE mesh of 60,000 nodes showed to be a converged
mesh for the bone stiffness and SED. A satisfying pre-
diction of bone stiffness was obtained for every sample,
whereas the yield load was satisfyingly predicted for 13
over 14 samples. The reported computational results
were insensitive to the properties assigned to the resin
block holding the bone epiphysis; this indicates that
resin blocks do not deform much during the

Table 1. Sensitivity analysis of the computational results: effect of resin properties, spring stiffness, and friction coefficient between
bending stand and resin on predicted bone stiffness and yield load.

Resin
modulus
(MPa)

Predicted
stiffness
(N mm21)

Predicted
yield
load (N)

Spring
stiffness
(N mm21)

Predicted
Stiffness
(N mm21)

Predicted
yield load (N)

Friction
coefficient

Predicted
stiffness
(N mm21)

Predicted
yield
load (N)

100 548.3 1500.2 1 532.3 1497.9 0.5 507.3 1425.9
500 548.3 1500.2 10 544.2 1500.1 0.6 527.2 1462.2
900 548.3 1500.2 100 548.8 1500.2 0.7 548.8 1500.2
1300 548.3 1500.2 1000 558.0 1489.4 0.8 572.2 1539.7
1700 548.3 1500.2 10,000 544.0 1508.8 0.9 595.1 1590.8

The star indicates a significant difference between a set of parameters and the selected parameters in the presented simulations.

Figure 5. Bone meshes resulting from the reconstruction of
segmented CT images together with the mapping procedure.
The colour code corresponds to the computed densities
(g mm23) assigned to each mesh element from HU values.
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simulations. The computational representation of those
blocks is thus a good approximation of the block beha-
viour and interaction with the bone.

Using the verified and validated non-linear FE soft-
ware Metafor36–39 to analyse long-bone three-point
bending tests permits high automation of the model

pre- and post-processing steps. This reduces user varia-
bility to the image segmentation step only. All other
parameters, especially as far as the definition of
model BCs representative of the experimental condi-
tions is concerned, are subject only to the experimental
variability.

Figure 6. (Left) Experimental versus simulated stiffness and yield load for the 14 bone samples and for the density-dependent
transversely isotropic model. The dashed line represents a perfect prediction (simulation = experiments), whereas the continuous
line represents the linear fitting of the data. (Right) Prediction error on stiffness and yield load for the seven pairs of humeri.

Figure 7. Bland–Altman representation of the results obtained for the density-dependent transversely isotropic model in terms of
bending stiffness (left) and yield load (right). Points are represented with the corresponding sample name (r = right, l = left).
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Density–elasticity relationships for canine long bone
as a function of dog mass were determined by weight-
ing human relationships from published canine bone
properties. Using material parameters from literature
only, and not specifically calibrated on the experimen-
tal results, the produced models were able to satisfy-
ingly predict bending stiffness and yield load. However,
more detailed studies on microstructure or composition
of canine bone as a function of mass (or breed) would
be required in order to propose a more comprehensive
relation.

The predictive power of the models for stiffness
values and yield loads is here reflected not only by a
good correlation but also by a good concordance,
which is less often the case in published models.40,41

This therefore suggested that the approach used in
this work produces valid models to predict bone stiff-
ness and yield loads in three-point bending of canine
long bones.

Comparison between models

The benefit of the non-linear density-dependent trans-
versely isotropic model compared to the two other
models is demonstrated in terms of its improved predic-
tion capability. However, it is surprising that the two-
material isotropic model leads to better predictions
than the density-dependent isotropic model. This may
be explained by the fact that during a bending test, the
bone is essentially subject to tension and compression,
and therefore, the longitudinal modulus of the bone
plays a crucial role compared to transverse modulus. In
the case of the density-dependent isotropic model, the
computed average Young’s modulus is therefore under-
estimated, for a loading involving mainly the longitudi-
nal direction. Predicted stiffness is thus globally
underestimated using the density-dependent isotropic
model. On the contrary, the two-material model may
widely overestimate Young’s modulus by considering

Figure 8. (Left) Experimental versus simulated stiffness and yield load for the 14 bone samples and for both a density-dependent
transversely isotropic model and a density-dependent isotropic model. The red dashed line represents a perfect prediction
(simulation = experiments). (Right) Prediction error on stiffness and yield load for these two models.

Table 2. Confrontation of the computational and experimental results in terms of predicted yield load and bending stiffness.

Stiffness (N mm21) Yield load (N)

Trans. Iso. Iso. 400 HU 600 HU Trans. Iso. Iso. 400 HU 600 HU

p value of the ANOVA test 0.67 2.48 3 1024 0.43 0.17 0.74 4.13 3 1025 0.18 0.08

The p value of ANOVA tests are given for density-dependent transversely isotropic models (trans. iso.), density-dependent isotropic models (iso.),

and two-material isotropic models with segmentation threshold of 400 and 600 HU. Low p values indicate a significant difference between

experimental and simulation results.
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constant density for cortical bone, as it is clearly seen
that it is not uniform over the cortical bone (Figure 5).
Therefore, it may lead to higher errors in more complex
loading modes even without involving a huge overesti-
mation of bone properties in the case of bending loads.
For instance, a HU value of 1500HU for cortical bone
corresponds to longitudinal and transverse moduli of
9.7 and 4.7GPa, respectively, using the density-
dependent transversely isotropic model, whereas it cor-
responds to Young’s modulus equal to 7.2GPa using
the density-dependent isotropic model and equal to
15GPa in the case of the two-material models. One
other limitation of the two-material model is the sensi-
tivity of the results to the threshold value chosen to
separate trabecular and cortical tissues, which may be
user-dependent. This limit obviously disappears when
the density-dependent model is used.

As far as the ease of implementation is concerned,
computation times were equivalent for the three
models. However, density-dependent models require
developing an algorithm in order to link HU values
to elastic properties and also require a calibration of
the CT-scan. Moreover, using a transversely isotropic
model requires the definition of orthotropic axis,
which has been approximated in our case for bending
tests. More complex algorithms would be required
to assign local orthotropic axis for more complex
loadings. Except for these pre-processing steps, the

calculation of the three types of models is then
straightforward.

Limitations and challenges

One of the limitations of bending tests lies in the fact
that results depend on the friction coefficient between
sample and the bending tools, as illustrated by our sen-
sitivity analysis and by Zeng et al.42 Bending stand–
resin interaction was modelled with friction coefficient
of 0.7 due to the lack of existing values. Even if this fric-
tion coefficient is realistic for such a soft resin, experi-
ments could be performed in order to confirm these
results. However, such measurements are complex to
perform, as long as apparent friction coefficients may
be affected by local deformation of the resin due to the
cylindrical shape of the bending stand and the high
loads involved. These local effects are not taken into
account in the simulations, as long as resin blocks have
been modelled by a single element. This particular point
may be subject to further analyses, for instance, using
an inverse approach from similar bending tests on well-
known materials.

A simple elastoplastic law with isotropic linear hard-
ening was used as proposed in the literature33 and asso-
ciated with a von Mises yield criterion. Even though
the use of such a criterion has been questioned,43

no consensus has been clearly found and this criterion

Figure 9. (Left) Experimental versus simulated stiffness and yield load for the 14 bone samples and for a two-material isotropic
model. In this model, trabecular and cortical tissues are considered homogeneous and are separated from density thresholds of 400
or 600 HU issued the CT scan. The red dashed line represents a perfect prediction (simulation = experiments). (Right) Prediction
error on stiffness and yield load for these two models.
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is still widely used.34,38,40 The simulated post-yield
response did not reproduce the plateau observed experi-
mentally for some samples: it may be therefore con-
cluded that the linear hardening set as 5% of the initial
mean modulus as proposed in the literature was exces-
sive and should be age and breed dependent or that a
perfectly plastic behaviour might be more representa-
tive. Including progressive damage in the model may
lead to better results as the physical phenomenon lead-
ing to bone non-linear behaviour is most probably
related to damage rather than plasticity.21,34,38,44

No distinction was made between cortical and trabe-
cular tissues in the bone material properties character-
izing the non-linear behaviour, although the
microstructures of these tissues are clearly different. It
is likely that here the trabecular tissue do not partici-
pate substantially to the bone bending response. The
material axes were defined from the mid-line of the dia-
physis, as commonly reported in the literature,45,46

leading to a global definition of the longitudinal direc-
tion. As the segment of interest involved in the bending
test was restricted to the bone diaphysis in which the
main orthotropic direction does not substantially vary,
it is unlikely that this simplification has an effect on the
reported results. These two limitations suggest that the
validity of the procedure proposed here is thus proba-
bly restricted to the bending mode of deformation.
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