[en] We sampled the water column of the Dendre stone pit lake (Belgium) in spring, summer, autumn and winter. Depth profiles of several physico-chemical variables, nutrients, dissolved gases (CO2, CH4, N2O), sulfate, sulfide, iron and manganese concentrations and d13C-CH4 were determined. We performed incubation experiments to quantify CH4 oxidation rates, with a focus on anaerobic CH4 oxidation (AOM), without and with an inhibitor of sulfate reduction (molybdate). The evolution of nitrate and sulfate concentrations during the incubations was monitored. The water column was anoxic below 20 m throughout the year, and was thermally stratified in summer and autumn. High partial pressure of CO2 and CH4 and high concentrations of ammonium and phosphate were observed in anoxic waters. Important nitrous oxide and nitrate concentration maxima were also observed (up to 440 nmol L- 1 and 80 mmol L -1, respectively). Vertical profiles of d13C-CH4 unambiguously showed the occurrence of AOM. Important AOM rates (up to 14 mmol L -1 d- 1) were observed and often co-occurred with nitrate consumption peaks, suggesting the occurrence of AOM coupled with nitrate reduction. AOM coupled with sulfate reduction also occurred, since AOM rates tended to be lower when molybdate was added. CH4 oxidation was mostly aerobic (~80% of total oxidation) in spring and winter, and almost exclusively anaerobic in summer and autumn. Despite important CH4 oxidation rates, the estimated CH4 fluxes from the water surface to the atmosphere were high (mean of 732 mmol m- 2 d- 1 in spring, summer and autumn, and up to 12,482 mmol m- 2 d- 1 in winter).
Research Center/Unit :
FOCUS - Freshwater and OCeanic science Unit of reSearch - ULiège
Disciplines :
Aquatic sciences & oceanology
Author, co-author :
Roland, Fleur ; Université de Liège > Département d'astrophys., géophysique et océanographie (AGO) > Chemical Oceanography Unit (AGO)
Darchambeau, François ; Université de Liège > Département d'astrophys., géophysique et océanographie (AGO) > Chemical Oceanography Unit (AGO)
Morana, Cédric ; Université de Liège - ULiège > Département d'astrophys., géophysique et océanographie (AGO) > Chemical Oceanography Unit (COU)
Bouillon, Steven
Borges, Alberto ; Université de Liège > Département d'astrophys., géophysique et océanographie (AGO) > Chemical Oceanography Unit (AGO)
Language :
English
Title :
Emission and oxidation of methane in a meromictic, eutrophic and temperate lake (Dendre, Belgium)
á Norði, K., Thamdrup, B., Nitrate-dependent anaerobic methane oxidation in a freshwater sediment. Geochim. Cosmochim. Acta 132 (2014), 141–150.
á Norði, K., Thamdrup, B., Schubert, C.J., Anaerobic oxidation of methane in an iron- rich Danish freshwater lake sediment. Limnol. Oceanogr. 58 (2013), 546–554.
Abril, G., Bouillon, S., Darchambeau, F., Teodoru, C.R., Marwick, T.R., Tamooh, F., Ochieng Omengo, F., Geeraert, N., Deirmendjian, L., Polsenaere, P., Technical Note: large overestimation of pCO2 calculated from pH and alkalinity in acidic, organic-rich freshwaters. Biogeosciences 12 (2015), 67–78.
APHA, Standard Methods for the Examination of Water and Wastewater. 1998 Washington.
Bastviken, D., Ejlertsson, J., Tranvik, L., Measurement of methane oxidation in lakes: a comparison of methods. Environ. Sci. Technol. 36 (2002), 3354–3361.
Bastviken, D., Tranvik, L.J., Downing, J.A., Crill, P.M., Enrich-Prast, A., Freshwater methane emissions offset the continental carbon sink. Science, 331, 2011, 50.
Boetius, A., Ravenschlag, K., Schubert, C.J., Rickert, D., Widdel, F., Gieseke, A., Amann, R., Jørgensen, B.B., Witte, U., Pfannkuche, O., A marine microbial consortium apparently mediating anaerobic oxidation of methane. Nature 407 (2000), 623–626.
Bogard, M.J., del Giorgio, P.A., Boutet, L., Chaves, M.C.G., Prairie, Y.T., Merante, A., Derry, A.M., Oxic water column methanogenesis as a major component of aquatic CH4 fluxes. Nat. Commun., 5, 2014.
Borrel, G., Jézéquel, D., Biderre-Petit, C., Morel-Desrosiers, N., Morel, J.-P., Peyret, P., Fonty, G., Lehours, A.-C., Production and consumption of methane in freshwater lake ecosystems. Res. Microbiol. 162 (2011), 832–847.
Cline, J.D., Spectrophotometric determination of hydrogen sulfide in natural waters. Limnol. Oceanogr. 14 (1969), 454–458.
Cole, J.J., Caraco, N.F., Atmospheric exchange of carbon dioxide in a low-wind oligotrophic lake measured by the addition of SF6. Limnol. Oceanogr. 43 (1998), 647–656.
Coleman, D.D., Risatti, J.B., Schoell, M., Fractionation of carbon and hydrogen isotopes by methane-oxidizing bacteria. Geochim. Cosmochim. Acta 45 (1981), 1033–1037.
Crowe, S., Katsev, S., Leslie, K., Sturm, A., Magen, C., Nomosatryo, S., Pack, M., Kessler, J., Reeburgh, W., Roberts, J., The methane cycle in ferruginous Lake Matano. Geobiology 9 (2011), 61–78.
Deutzmann, J.S., Schink, B., Anaerobic oxidation of methane in sediments of Lake Constance, an oligotrophic freshwater lake. Appl. Environ. Microbiol. 77 (2011), 4429–4436.
Dong, L.F., Sobey, M.N., Smith, C., Rusmana, I., Phillips, W., Stott, A., Osborn, A.M., Nedwell, D.B., Dissimilatory reduction of nitrate to ammonium (DNRA) not denitrification or anammox dominates benthic nitrate reduction in tropical estuaries. Limnol. Oceanogr., 2011, 279–291.
Ettwig, K.F., Butler, M.K., Le Paslier, D., Pelletier, E., Mangenot, S., Kuypers, M.M., Schreiber, F., Dutilh, B.E., Zedelius, J., De Beer, D., Nitrite-driven anaerobic methane oxidation by oxygenic bacteria. Nature 464 (2010), 543–548.
Grossart, H.-P., Frindte, K., Dziallas, C., Eckert, W., Tang, K.W., Microbial methane production in oxygenated water column of an oligotrophic lake. PNAS 108 (2011), 19657–19661.
Guérin, F., Abril, G., Significance of pelagic aerobic methane oxidation in the methane and carbon budget of a tropical reservoir. J. Geophys. Res. Biogeosci., 112, 2007.
Haroon, M.F., Hu, S., Shi, Y., Imelfort, M., Keller, J., Hugenholtz, P., Yuan, Z., Tyson, G.W., Anaerobic oxidation of methane coupled to nitrate reduction in a novel archaeal lineage. Nature 500 (2013), 567–570.
Harrits, S.M., Hanson, R.S., Stratification of aerobic methane-oxidizing organisms in lake Mendota, Madison. Wis. Limnol. Oceanogr. 25 (1980), 412–421.
Holgerson, M.A., Raymond, P.A., Large contribution to inland water CO2 and CH4 emissions from very small ponds. Nat. Geosci. 9 (2016), 222–226.
Hu, S., Zeng, R.J., Keller, J., Lant, P.A., Yuan, Z., Effect of nitrate and nitrite on the selection of microorganisms in the denitrifying anaerobic methane oxidation process. Environ. Microbiol. Rep. 3 (2011), 315–319.
Huttunen, J.T., Alm, J., Liikanen, A., Juutinen, S., Larmola, T., Hammar, T., Silvola, J., Martikainen, P.J., Fluxes of methane, carbon dioxide and nitrous oxide in boreal lakes and potential anthropogenic effects on the aquatic greenhouse gas emissions. Chemosphere 52 (2003), 609–621.
IPCC, Climate Change 2013: the Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change., 2013, Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA.
Iversen, N., Jørgensen, B., Anaerobic methane oxidation rates at the sulfate-methane transition in marine sediments from Kattegat and Skagerrak (Denmark). Limnol. Oceanogr. 30 (1985), 944–955.
Iversen, N., Oremland, R.S., Klug, M.J., Big Soda Lake (Nevada). 3. Pelagic methanogenesis and anaerobic methane oxidation. Limnol. Oceanogr. 32 (1987), 804–814.
Jørgensen, B.B., Weber, A., Zopfi, J., Sulfate reduction and anaerobic methane oxidation in Black Sea sediments. Deep-Sea Res. Pt. I 48 (2001), 2097–2120.
Kirschke, S., Bousquet, P., Ciais, P., Saunois, M., Canadell, J.G., Dlugokencky, E.J., Bergamaschi, P., Bergmann, D., Blake, D.R., Bruhwiler, L., Cameron-Smith, P., Castaldi, S., Chevallier, F., Feng, L., Fraser, A., Heimann, M., Hodson, E.L., Houweling, S., Josse, B., Fraser, P.J., Krummel, P.B., Lamarque, J.-F., Langenfelds, R.L., Le Quere, C., Naik, V., O'Doherty, S., Palmer, P.I., Pison, I., Plummer, D., Poulter, B., Prinn, R.G., Rigby, M., Ringeval, B., Santini, M., Schmidt, M., Shindell, D.T., Simpson, I.J., Spahni, R., Steele, L.P., Strode, S.A., Sudo, K., Szopa, S., van der Werf, G.R., Voulgarakis, A., van Weele, M., Weiss, R.F., Williams, J.E., Zeng, G., Three decades of global methane sources and sinks. Nat. Geosci. 6 (2013), 813–823.
Lopes, F., Viollier, E., Thiam, A., Michard, G., Abril, G., Groleau, A., Prévot, F., Carrias, J.-F., Albéric, P., Jézéquel, D., Biogeochemical modelling of anaerobic vs. aerobic methane oxidation in a meromictic crater lake (Lake Pavin, France). Appl. Geochem 26 (2011), 1919–1932.
Miranda, K.M., Espey, M.G., Wink, D.A., A rapid, simple spectrophotometric method for simultaneous detection of nitrate and nitrite. Nitric Oxide-Biol. Ch 5 (2001), 62–71.
Morana, C., Borges, A.V., Roland, F.A.E., Darchambeau, F., Descy, J.P., Bouillon, S., Methanotrophy within the water column of a large meromictic tropical lake (Lake Kivu, East Africa). Biogeosciences 12 (2015), 2077–2088.
Nauhaus, K., Treude, T., Boetius, A., Krüger, M., Environmental regulation of the anaerobic oxidation of methane: a comparison of ANME-I and ANME-II communities. Environ. Microbiol. 7 (2005), 98–106.
NOAA, The NOAA Annual Greenhouse Gas Index (AGGI). 2015, NOAA Earth System Research Laboratory, Broadway.
Oremland, R.S., Miller, L.G., Colbertson, C.W., Robinson, S., Smith, R.L., Lovley, D., Whiticar, M.J., King, G.M., Kiene, R.P., Iversen, N., Aspects of the Biogeochemistry of Methane in Mono Lake and the Mono Basin of California. Biogeochemistry of Global Change. 1993, Springer, 704–741.
Quay, P., Stutsman, J., Wilbur, D., Snover, A., Dlugokencky, E., Brown, T., The isotopic composition of atmospheric methane. Glob. Biogeochem. Cy. 13 (1999), 445–461.
Raghoebarsing, A.A., Pol, A., Van de Pas-Schoonen, K.T., Smolders, A.J., Ettwig, K.F., Rijpstra, W.I.C., Schouten, S., Damsté, J.S.S., den Camp, H.J.O., Jetten, M.S., A microbial consortium couples anaerobic methane oxidation to denitrification. Nature 440 (2006), 918–921.
Rudd, J.W.M., Hamilton, R.D., Campbell, N.E.R., Measurement of microbial oxidation of methane in lake water. Limnol. Oceanogr. 19 (1974), 519–524.
Saad, O.A.L.O., Conrad, R., Temperature dependence of nitrification, denitrification, and turnover of nitric oxide in different soils. Biol. Fert. Soils 15 (1993), 21–27.
Sivan, O., Adler, M., Pearson, A., Gelman, F., Bar-Or, I., John, S.G., Eckert, W., Geochemical evidence for iron-mediated anaerobic oxidation of methane. Limnol. Oceanogr. 56 (2011), 1536–1544.
SPW-DGO3, Etat des nappes d'eau souterraine de Wallonie. 2015 Belgique.
Tang, K.W., McGinnis, D.F., Frindte, K., Brüchert, V., Grossart, H.-P., Paradox reconsidered: methane oversaturation in well-oxygenated lake waters. Limnol. Oceanogr. 59 (2014), 275–284.
Tang, K.W., McGinnis, D.F., Ionescu, D., Grossart, H.-P., Methane production in oxic lake waters potentially increases aquatic methane flux to air. Environ. Sci. Technol. Lett. 3 (2016), 227–233.
Van Hulle, S.W.H., Vandeweyer, H.J.P., Meesschaert, B.D., Vanrolleghem, P.A., Dejans, P., Dumoulin, A., Engineering aspects and practical application of autotrophic nitrogen removal from nitrogen rich streams. Chem. Eng. J. 162 (2010), 1–20.
Weiss, R.F., Determinations of carbon dioxide and methane by dual catalyst flame ionization chromatography and nitrous oxide by electron capture chromatography. J. Chromatogr. Sci. 19 (1981), 611–616.
Weiss, R.F., Price, B.A., Nitrous oxide solubility in water and seawater. Mar. Chem. 8 (1980), 347–359.
Westwood, D., Ammonia in Waters. Methods for the Examination of Waters and Associated Materials. 1981, HMSO, London, United Kingdom.
Yamamoto, S., Alcauskas, J.B., Crozier, T.E., Solubility of methane in distilled water and seawater. J. Chem. Eng. Data 21 (1976), 78–80.