Emission and oxidation of methane in a meromictic, eutrophic and temperate lake (Dendre, Belgium)

Fleur A.E. Roland,*, François Darchambeau, Cédric Moran, Steven Bouillon, Alberto V. Borges

*Chemical Oceanography Unit, Université de Liège, Belgium
bDepartment of Earth and Environmental Sciences, Katholieke Universiteit Leuven (KU Leuven), Belgium

Highlights

- The studied lake was meromictic and characterized by high methane, nutrients and sulfate concentrations in the water column.
- High aerobic and anaerobic methane oxidation rates were observed in the water column, and were dependent on the season.
- Anaerobic methane oxidation was linked to sulfate reduction, and potentially to nitrate reduction.
- Despite high methane oxidation rates, methane fluxes to the atmosphere were high.

Article Info

Article history:
Received 26 April 2016
Received in revised form 13 October 2016
Accepted 31 October 2016
Available online 9 November 2016
Handling Editor: Y Liu

Keywords:
Anaerobic methane oxidation
Methane emission
Nitrous oxide
Carbon dioxide
Greenhouse gases
Lake

Abstract

We sampled the water column of the Dendre stone pit lake (Belgium) in spring, summer, autumn and winter. Depth profiles of several physico-chemical variables, nutrients, dissolved gases (CO2, CH4, N2O), sulfate, sulfide, iron and manganese concentrations and δ13C-CH4 were determined. We performed incubation experiments to quantify CH4 oxidation rates, with a focus on anaerobic CH4 oxidation (AOM), without and with an inhibitor of sulfate reduction (molybdate). The evolution of nitrate and sulfate concentrations during the incubations was monitored. The water column was anoxic below 20 m throughout the year, and was thermally stratified in summer and autumn. High partial pressure of CO2 and CH4 and high concentrations of ammonium and phosphate were observed in anoxic waters. Important nitrous oxide and nitrate concentration maxima were also observed (up to 440 nmol L⁻¹ and 80 μmol L⁻¹, respectively). Vertical profiles of δ13C-CH4 unambiguously showed the occurrence of AOM. Important AOM rates (up to 14 μmol L⁻¹ d⁻¹) were observed and often co-occurred with nitrate consumption peaks, suggesting the occurrence of AOM coupled with nitrate reduction. AOM coupled with sulfate reduction also occurred, since AOM rates tended to be lower when molybdate was added. CH4 oxidation was mostly aerobic (~80% of total oxidation) in spring and winter, and almost exclusively anaerobic in summer and autumn. Despite important CH4 oxidation rates, the estimated CH4 fluxes from the water surface to the atmosphere were high (mean of 732 μmol m⁻² d⁻¹ in spring, summer and autumn, and up to 12,482 μmol m⁻² d⁻¹ in winter).

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Methane (CH4) is known to be an important natural and anthropogenic greenhouse gas. CH4 concentrations in the atmosphere have increased dramatically during the 20th century to reach 1850 ppb in 2015, mainly due to human activities (agriculture, waste disposal and energy extraction and production) (IPCC, 2013; Kirschke et al., 2013; NOAA, 2015). In natural environments, CH4 is anaerobically produced by methanogenic archaea. The total CH4 emission to the atmosphere has been estimated to 540 Tg CH4 yr⁻¹, with a significant contribution from inland waters (Bastviken et al., 2011; Borges et al., 2015; Holgerson and Raymond, 2016). The actual amount of CH4 produced is higher, as a significant fraction of CH4 produced is biologically oxidized before reaching the atmosphere (Bastviken et al., 2002). CH4 oxidation limits the flux of CH4 to the atmosphere, and in inland waters can fuel a
microbial based food-web (Jones and Grey, 2011).

CH4 oxidation can be performed under both aerobic and anaerobic conditions. It is now commonly assumed that anaerobic CH4 oxidation (AOM) can occur with different final electron acceptors: sulfate (SO4²⁻), nitrate (NO3⁻), nitrite (NO2⁻), iron (Fe) and/or manganese (Mn) (Borrel et al., 2011). In seawater, NO3 concentrations are low (usually < 5 μmol L⁻¹), while SO4²⁻ concentrations are much higher (~30 mmol L⁻¹). Also, Fe and Mn concentrations (on the order of pmol L⁻¹) in seawater are negligible compared to SO4²⁻ concentrations. So, even if denitrification, Fe- and Mn-reduction are thermodynamically more favorable than SO4²⁻ reduction, the latter remains the main anaerobic pathway for the degradation of organic matter in the oceans, including the degradation of CH4. While AOM is thus generally coupled to SO4²⁻ reduction (SDMO) in marine waters and sediments (e.g. Iversen and Jørgensen, 1985; Boetius et al., 2000; Jørgensen et al., 2001), other electron acceptors of AOM have been much less frequently studied in freshwater systems. Due to low the SO4²⁻ concentrations usually observed in freshwaters environments, AOM is often considered to be negligible compared to aerobic CH4 oxidation (Rudd et al., 1974). However, AOM in freshwaters can also be coupled to NO2⁻ and NO3⁻ reduction (NDMO), which is thermodynamically much more favorable than SDMO (free Gibbs energy of ~928, ~765 and ~17 kJ mol⁻¹ CH4, with NO3⁻, NO2⁻ and SO4²⁻ reduction, respectively; Raghoebarsing et al., 2006; Borrel et al., 2011). NDMO has been observed in experimental environments with enrichment of bacteria of interest (e.g. Ettwig et al., 2010; Hu et al., 2011; Haroon et al., 2013), or in sediments cultures with electron acceptors added (e.g. Deutzmann and Schink, 2011; á Norði and Thamdrup, 2014). Despite numerous laboratory observations, the significance of NDMO in natural environments is still largely unknown. Although AOM coupled with Fe- and Mn-reduction (FDMO and MDMO, respectively) has been proposed to occur in various freshwater environments (e.g. ferruginous lakes Matano and Kinneret; Crowe et al., 2011; Sivan et al., 2011; á Norði et al., 2013), to our knowledge no direct rate measurements have been reported in the literature.

In this study, we investigated biogeochemistry of the water column of Dendre stone pit lake (Belgium), a relatively deep (maximum depth 30 m) but small (0.032 km²) water body in a former limestone quarry, with a focus on quantifying AOM rates and related electron acceptors. This lake was chosen to be an ideal system for studying AOM dynamics because it is known to be anoxic (waters anoxic below 20 m depth throughout the year) and rich in both organic matter (eutrophic) and sulfide (HS⁻) in the anoxic layers. The lake is fed by springs at 7 and 18 m depth, providing potentially NO3 rich groundwater due to generalized fertilizer contamination that is common in Belgium (SPW-DGO3, 2015). We thus hypothesized that high organic matter supply and bottom layer anoxia sustain high methanogenesis rates, and that CH4 production is removed by SDMO and/or NDMO based on occurrence of high HS⁻ concentrations, and potentially high NO3 concentrations.

2. Material and methods

2.1. Physico-chemical parameters and sampling

Sampling in the Dendre stone pit lake (50.6157°N, 3.7949°E) was carried out in spring (May 2014), summer (August 2014), winter (February 2015) and autumn (October 2015). Depth profiles of dissolved oxygen (O2) concentrations, temperature, pH and specific conductivity were obtained with Yellow Springs Instrument 6600 V2 and Hydrolab D5S multiparameter probes. The conductivity, pH and oxygen probes were calibrated the day before each sampling using the protocols and standards recommended by the manufacturer.

2.2. CH4 oxidation measurements and water column chemical analyses

At each depth of interest, duplicate samples for N2O and CH4 concentration analyses were collected in 60 mL glass serum bottles from a Niskin bottle through a silicon tube connected to the outlet, left to overflow, poisoned with 200 μL of a saturated HgCl2 solution and immediately sealed with butyl stoppers and aluminium caps. Ten other bottles per depth were incubated in the dark and constant temperature (close to in-situ temperature): five of them received 250 μL of a solution of molybdate (1 mol L⁻¹, hence a final concentration of 4 mmol L⁻¹), an inhibitor of sulfur-reducing bacteria and five received no treatment. The biological activity of two incubated bottles (one from each treatment) was stopped at 12, 24, 48, 72 and 96 h by the addition of a saturated 200 μL HgCl2 solution. CH4 and N2O concentrations were determined via the headspace equilibration technique (20 mL N2 headspace in 60 mL serum bottles) and measured by gas chromatography (GC) with electron capture detection (ECD) for N2O and with flame ionization detection (FID) for CH4. The SRI 8610C GC-ECD-FID was calibrated with certified CH4:CO2:N2O:N2 mixtures (Air Liquide, Belgium) of 1, 10, 30 and 509 ppm CH4 and of 0.2, 2.0 and 6.0 ppm N2O. Concentrations were computed using the solubility coefficients of Yamamoto et al. (1976) and Weiss and Price (1980), for CH4 and N2O, respectively. The precision of measurements was ±3.9% and ±3.2% for CH4 and N2O, respectively. CH4 oxidation rates were calculated based on the decrease of CH4 concentrations in the incubations.

In autumn, triplicate samples for the determination of the partial pressure of CO2 (pCO2) were collected in 60 ml plastic syringes directly from the Niskin. The pCO2 was measured with an infra-red gas analyzer (Licro Li-840) after headspace equilibration in the syringe (Abril et al., 2015; Borges et al., 2015). The Li-840 was calibrated with N2 and certified CO2:N2 mixtures (Air Liquide, Belgium) of 388, 813, 3788 and 8300 ppm CO2. The precision of measurements was ±4.1%.

Water extracted for creating the headspace in the serum bottles was used to quantify SO4²⁻, NH4⁺, NO3⁻, NO2⁻, Mn and Fe concentrations. SO4²⁻, NO3⁻ and NH4⁺ concentrations were quantified colorimetrically using a 5-cm optical path and a Genesys 10vis spectrophotometer (Thermo Spectronic). SO4²⁻ concentrations were determined by the nephelometric method according to Rodier et al. (1996), after being precipitated in barium sulfate in an acid environment. NH4⁺ concentrations were determined using the dichloroisocyanurate-salicylate-nitroprussiate colorimetric method (Westwood, 1981), and NO3⁻ concentrations were determined by the sulfanilamide coloration method (APHA, 1998). NO2⁻ concentrations were determined after vanadium reduction to NO3⁻ and quantified with a Multiskan Ascent Thermo Scientific multplates reader (APHA, 1998; Miranda et al., 2001). The detection limits for these methods were 52, 0.3, 0.15 and 0.03 μmol L⁻¹ for SO4²⁻, NH4⁺, NO3⁻ and NO2⁻, respectively.

The samples for total Fe and Mn determination were digested and mineralized in nitric acid, using specific Teflon bombs in a microwave digestion labstation (Ethos D, Milestone Inc.). They were finally diluted into milli-Q water to a volume of 50 ml. The total Fe and Mn concentrations were determined by inductively coupled plasma mass spectrometry (ICP-MS) using dynamic reaction cell (DRC) technology (ICP-MS SCIEX ELAN DRC II, PerkinElmer Inc.). Analytical accuracy was verified by a certified reference material (BCR 715, Industrial Effluent Wastewater).

Additional samples to determine vertical profiles of NO3⁻, NH4⁺,
NO$_2$, PO$_4$ and SO$_4$ concentrations were collected in 50 ml plastic vials after being filtered through a 0.22 µm syringe filter, and stored frozen. NO$_3$, NO$_2$, NH$_4$ and SO$_4$ concentrations were determined according to respective methods described above. PO$_4$ concentrations were determined colorimetrically with a 5-cm optical path, in a spectrophotometer Thermo Spectronic Genesys 10vis, using the ammonium molybdate-potassium antimonyl tartrate method (APHA, 1998). The detection limit of this method was 0.03 µmol L$^{-1}$.

Samples to determine vertical profiles of H$_2$S concentrations were collected in 60 ml biological oxygen demand bottles after being filtered through a 0.22 µm syringe filter, and preserved with 2 ml of 1 mol L$^{-1}$ zinc acetate. Concentrations were determined colorimetrically as described above, using the analytical method described by Cline (1969).

In summer and autumn, an additional 60 ml glass serum bottle per depth was collected and preserved as described above in order to measure the δ^{13}C values of CH$_4$ (δ^{13}C-CH$_4$). δ^{13}C-CH$_4$ was then determined by a custom developed technique (Morana et al., 2015), whereby a 5 ml helium headspace was first created and CH$_4$ was flushed out through a double-hole needle. CO$_2$ and H$_2$O were first removed with a CO$_2$ trap (soda lime) and a water trap (magnesium perchlorate) and then the non-methane volatile organic molecules were trapped and hence removed from the gas stream in a loop immersed in liquid nitrogen. The CH$_4$ was converted to CO$_2$ in an online combustion column similar to that in an Elemental Analyzer. The resulting CO$_2$ was subsequently preconcentrated by immersion of a stainless steel loop in liquid nitrogen passed through a micropacked GC column (HayeSep Q 2 m, 0.75 mm ID; Restek), and finally measured on a Thermo DeltaV Advantage isotope mass spectrometer. CO$_2$ produced by acidification (H$_3$PO$_4$) of certified reference standards for δ^{13}C analysis (IAEA-CO1 and LSVEC) was used to calibrate δ^{13}C-CH$_4$ data. Reproducibility estimated based on duplicate injection of a selection of samples was typically better than ±0.5‰.

2.3. CO$_2$, CH$_4$ and N$_2$O fluxes calculations

CO$_2$, CH$_4$ and N$_2$O fluxes to the atmosphere were calculated from the dissolved concentration at 1 m depth from which was computed the concentration gradient across the air-water interface of CO$_2$, CH$_4$ and N$_2$O, and the gas transfer velocity computed from wind speed according to the Cole and Caraco (1998) relationship. A positive flux value corresponds to a net gas transfer from the water to the atmosphere, while a negative flux corresponds to a net gas transfer from the atmosphere to the water. Wind speeds were obtained from the National Centers for Environmental Prediction (NCEP) gridded daily product (grid point: 50.4752° N, 3.7500° E).

3. Results

3.1. Physico-chemical parameters

The position of thermoclines and chemoclines (specific conductivity and pH) strongly differed between seasons (Fig. 1). The water column was well stratified during the sampling in spring, summer and autumn, with thermoclines located in the upper part of the water column (first 10 m), while in winter, the water column was mixed from surface to 20 m. Surface temperatures were higher in spring and summer (maximum 18 °C at 1 m depth), lowest in winter (5 °C at 1 m depth), and intermediate in autumn (14 °C at 1 m depth).

During winter, when the water column was almost entirely mixed, the oxycline was located at the bottom of the lake (20 m) (Fig. 1). However, the oxycline moved upward following the establishment of the thermal stratification in spring, to reach 7 m and 8.5 m in summer and autumn, respectively. In spring, summer and winter, significant N$_2$O concentration peaks were observed, with a maximum of 440 nmol L$^{-1}$ recorded at 14 m in summer. In autumn, the distribution of N$_2$O was more uniform than during the other seasons, with highest N$_2$O concentrations of 35 nmol L$^{-1}$. Except during winter when the peak was observed at the oxic-anoxic interface, N$_2$O peaks were observed below the oxycline, in anoxic waters during the other three seasons. The pCO$_2$ value in autumn (1560 ppm at 1 m depth) was well above the atmospheric equilibrium (390 ppm) in oxic surface waters and strongly increased in anoxic waters to reach ~18,000 ppm. The CH$_4$ concentrations strongly increased in anoxic waters (up to 618 µmol L$^{-1}$) but were also quite important in oxic waters, especially in winter (up to 30 µmol L$^{-1}$ at 1 m depth), and ranged between 0.6 and 1 µmol L$^{-1}$ at 1 m depth during the other three seasons. During summer, δ^{13}C-CH$_4$ were stable in bottom waters (−75‰) but started to gradually increase at 10 m, slightly below the base of the oxycline, to reach a maximum of −45‰ between 8.5 and 6 m. In autumn, similarly low δ^{13}C-CH$_4$ (−75‰) were measured in bottom waters but the increase near the oxic-anoxic interface was more abrupt.

Vertical profiles of NO$_3$ and NO$_2$ strongly differed between seasons (Fig. 1). Important NO$_3$ accumulation zones (nitraclines) were observed in both oxic and anoxic waters in spring and at the oxic-anoxic interface in summer. The maximum NO$_3$ concentration was 70 and 30 µmol L$^{-1}$ in spring and summer, respectively. In autumn and winter, no nitrilacne was observed, but instead NO$_3$ concentrations were quite stable throughout the oxic part of the water column (around 15 and 20 µmol L$^{-1}$ in autumn and winter, respectively), and decreased down to 1 µmol L$^{-1}$ in anoxic waters. Except in autumn where NO$_3$ concentrations remained low (below 1 µmol L$^{-1}$) throughout the water column, important NO$_2$ concentrations peaks were also observed. In spring and summer, the maximum peaks of 10 and 20 µmol L$^{-1}$, respectively, were located in anoxic waters. In winter, maximum peak was slightly lower (8 µmol L$^{-1}$) and was located at the oxic-anoxic interface. For each season, deep anoxic waters were rich in NH$_4$ and PO$_4$ (up to 190 and 22 µmol L$^{-1}$, respectively), while oxic waters were depleted in these nutrients. However, higher concentrations were observed in oxic waters in winter than in other seasons. Indeed NH$_4$ and PO$_4$ concentrations were around 35 and 2 µmol L$^{-1}$, respectively, all along the oxic part of the water column in winter, while NH$_4$ concentrations were below 5 µmol L$^{-1}$ and PO$_4$ concentrations below detection in other seasons.

For each season, total Fe and Mn concentrations were quite high in anoxic waters. The maximum Fe concentration peak of 23 µmol L$^{-1}$ was observed in summer, while the maximum Mn concentration peak of 15 µmol L$^{-1}$ was observed in autumn. SO$_4$ concentrations were high all along the vertical profiles (ranging between 354 and 1537 µmol L$^{-1}$), but tended to decrease in deep anoxic waters, co-occurring with an increase of H$_2$S concentrations (Fig. 1).

3.2. CH$_4$ oxidation

CH$_4$ oxidation was observed during all seasons (Fig. 2). In spring, important rates were observed in both oxic and anoxic waters, without Mo added, up to 4 and 3 µmol L$^{-1}$ d$^{-1}$, respectively. In summer, no CH$_4$ oxidation was observed in oxic waters. However, important CH$_4$ oxidation rates were observed in anoxic waters, without and with Mo added. Without Mo added, the two maximum peaks of 9 and 6 µmol L$^{-1}$ d$^{-1}$ were observed at 14 and 18 m depth, respectively. These peaks co-occurred with important NO$_3$ and SO$_4$ consumption peaks, up to 2 and 20 µmol L$^{-1}$ d$^{-1}$, respectively. A NO$_2$ consumption peak of 0.4 µmol L$^{-1}$ d$^{-1}$ was also observed at
Fig. 1. Vertical profiles of dissolved oxygen (mg L⁻¹), temperature (°C), specific conductivity (µS cm⁻¹), pH, N₂O concentrations (nmol L⁻¹), pCO₂ (ppm.10⁻³), CH₄ concentrations (nmol L⁻¹), δ¹³C-CH₄ (%), nutrients (NO₃⁻, NO₂⁻, NH₄⁺, PO₄³⁻), total Fe, total Mn, SO₄²⁻ and H₂S concentrations (µmol L⁻¹) in spring (blue), summer (red), autumn (black) and winter (green). Vertical lines to the right represent the anoxic layer for each season (same color code). Note the X log scale for CH₄ concentrations. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
14 m, and another one was also observed in oxic waters. With Mo added, oxidation peaks were observed at the same depths, but rates were lower than without Mo. Important NO₃ consumption peaks were also observed at 14 and 18 m, up to 5.5 μmol L⁻¹ d⁻¹, so higher than without Mo added.

In autumn, important oxidation rates were measured throughout the anoxic zone, while no CH₄ oxidation was observed in oxic waters. The maximum oxidation rate of ~15 μmol L⁻¹ d⁻¹ was observed at 20 m, with and without Mo added. Except at 20 m where CH₄ oxidation rate with Mo was slightly higher than without Mo, CH₄ oxidation rates were always lower with Mo added. Without Mo added, only one peak of NO₃ consumption was observed, at 10 m, and thus co-occurred with the first oxidation peak. One SO₄²⁻ consumption peak of 14 μmol L⁻¹ d⁻¹ was observed at 12 m. Below 14 m, SO₄²⁻ consumption linearly increased. No measurable NO₂ consumption was observed. With Mo added, NO₃ consumption was observed just below the oxic-anoxic interface and linearly decreased in anoxic waters, following the same pattern than CH₄ oxidation until 12 m depth. In winter, an aerobic oxidation rate of 1 μmol L⁻¹ d⁻¹ was observed at 18 m. Without Mo added, the maximum oxidation peak of 4 μmol L⁻¹ d⁻¹ was observed at the oxic-anoxic interface, and no oxidation was observed below 20 m. A NO₃ consumption rate of 3 μmol L⁻¹ d⁻¹ was observed at the same depth, and SO₄²⁻ consumption strongly increased below 20 m (until 37 μmol L⁻¹ d⁻¹). No NO₂ consumption was observed. With Mo added, no aerobic CH₄ oxidation was observed. Also, the CH₄ oxidation peak observed at 20 m was slightly higher (5 μmol L⁻¹ d⁻¹) and an oxidation peak of 6 μmol L⁻¹ d⁻¹ was observed at 22 m depth. NO₃ consumption was lower than without Mo at 20 m depth, but was higher at 22 m.

3.3. CH₄, NO₂ and CO₂ fluxes

CH₄ and NO₂ air-water fluxes were estimated during the four seasons, and CO₂ air-water flux was estimated for autumn (Table 1). The maximum CH₄ flux of 12,482 μmol m⁻² d⁻¹ was observed in winter, while CH₄ fluxes were similar in spring, summer and autumn (mean of 641 μmol m⁻² d⁻¹). NO₂ fluxes were quite constant all along the year (mean of 17 μmol m⁻² d⁻¹ for summer, autumn and winter), except in spring where the flux was distinctly lower (5 μmol m⁻² d⁻¹). The CO₂ flux in autumn was 67,000 μmol m⁻² d⁻¹.

4. Discussion

Physico-chemical parameters (temperature, specific conductivity, pH and oxygen) showed that the mixed layer depth varied according to the season, but that the deepest part of the water column (below 20 m) was anoxic throughout the year. Oxygen concentrations in surface waters were also higher in summer and spring, which can be linked with higher temperatures and irradiance favoring phytoplankton activity, and oxygen production through photosynthesis.

Higher water temperatures also enhance bacterial activity, and denitrification and nitrification, which both produce NO₂, are known to be enhanced when temperature increases (Saad and Conrad, 1993; Van Hulle et al., 2010; Dong et al., 2011). High NO₂ concentrations were observed in summer and spring. In spring, the maximum NO₂ peak was located at 16 m, and co-occurred with the maxima in NO₂ concentration and NO₃ consumption rate. In summer, the maximum NO₂ peak was observed at 14 m depth, and also co-occurred with the maximum NO₃ consumption rate. Altogether, these observations reflect the occurrence of denitrification in the anoxic water of the lake. Heterotrophic denitrification requires organic matter and NO₃ supply. The higher NO₃ concentrations were observed in spring, when nitrification is favored by higher temperatures and abundant NH₄ following winter-time mixing.

Denitrification can be heterotrophic, with organic matter as electron donor, but can also be autotrophic with other electron donors. One of these electron donors can be CH₄. AOM coupled with NO₃ reduction (NDMO) is still poorly understood. However, it is thermodynamically highly favorable (Borrel et al., 2011) and can thus be of great importance in anoxic environments with high NO₃ concentrations. During this study, we investigated CH₄ oxidation using two different approaches. The first one was the measurement of the δ¹³C of dissolved CH₄ along the depth profile in summer and autumn. While δ¹³C-CH₄ values in deep waters were very low (~65‰), significant increases of δ¹³C-CH₄ values were observed between 6 and 8.5 m depth in summer (at the oxic-anoxic interface and in anoxic waters, until ~43‰), and at 8 m depth in autumn (also at the oxic-anoxic interface, until ~43‰). During microbial processes, isotopic fractionation occurs, since organisms preferentially use the lighter isotopes. Therefore, during CH₄ oxidation, bacteria preferentially use ¹²C-CH₄ and the residual CH₄ pool is then enriched in ¹³C. For both seasons, the increases of δ¹³C-CH₄ values co-occurred with a strong decrease of CH₄ concentrations, at the oxic-anoxic interfaces. Hence, the vertical profiles of δ¹³C-CH₄ strongly suggest that a large part of CH₄ was oxidized within a 5 m depth interval, in summer and autumn. In autumn, it also co-occurred with a strong increase in pCO₂. In autumn and summer, δ¹³C-CH₄ decreased from the base of the oxic layer towards surface waters, by ~22 and ~12‰, respectively. Such a decrease cannot be related to exchange with the atmosphere since the atmospheric δ¹³C-CH₄ is close to ~47‰ (Quay et al., 1999). A possible explanation would be CH₄ production in oxic conditions related to primary production by pathways that remain elusive (Tang et al., 2016) as recently reported in several lakes (Grossart et al., 2011; Bogard et al., 2014; Tang et al., 2014). Such an explanation is consistent with the eutrophic nature of the Dendre Lake and should be further investigated in future.

The fraction of the CH₄ flux oxidized in a given depth interval was calculated according to the following equation (Coleman et al., 1981):

\[
\ln (1-f) = \ln ((\delta^{13}CCH₄ + 1000)/(\delta^{13}CCH₄ + 1000))/((1/\alpha)–1)
\]

where \(f\) is the fraction of CH₄ oxidized in the depth interval, \(\delta^{13}C\)CH₄ and \(\delta^{13}C\)CH₄ are the δ¹³C-CH₄ values at the top and at the bottom of the depth interval, respectively, and \(\alpha\) is the isotope fractionation factor.

Coleman et al. (1981) showed that \(\alpha\) was dependent on temperature. Bastviken et al. (2002) determined a \(\alpha\) of 1.0196 ± 0.002 for three Swedish lakes, whose temperature profiles are closer to what we observed. Based on this approach, we computed that in the Dendre Lake in summer, a large fraction (70–73%) of the upward flux of CH₄ was oxidized in a narrow depth interval (between 8.5 and 12 m; anoxic waters). The same observation is made in autumn, since 81–83% was oxidized between 8 and 10 m depth (mostly in anoxic waters). This isotopic approach clearly shows the importance of the AOM in the water column of the pit stone lake of the Dendre.

In addition to these indirect estimations of CH₄ oxidation, we directly quantified CH₄ oxidation in incubation experiments during which the evolution of CH₄ concentrations was measured through time. Our incubations focused on AOM and fewer measurements were made in oxic waters. In spring, quite important aerobic CH₄ oxidation rates were observed. If we integrate aerobic rates over the oxic water column (from 0 to 13 m), we obtain an estimated aerobic oxidation rate of 38 μmol m⁻² d⁻¹. If we do the same for the anoxic...
water column (from 14 to 25 m), only 10 μmol m⁻² d⁻¹ were anaerobically oxidized. These estimates suggest that aerobic CH₄ oxidation was the main pathway of CH₄ oxidation in spring, yet AOM still accounted for 21% of total CH₄ oxidation (Table 2). In summer, three measurements of aerobic CH₄ oxidation were also made at 5.5, 6 and 6.5 m depth. Very low CH₄ oxidation rates were observed (mean of 0.2 μmol L⁻¹ d⁻¹) in oxic waters, while the maximum AOM rate was estimated to 9 μmol L⁻¹ d⁻¹ at 14 m, in accordance with δ¹³C-CH₄ data. In summer, AOM was clearly the main pathway of CH₄ oxidation, accounting for 99% of total CH₄ oxidation (Table 2). As shown in Fig. 3, aerobic CH₄ oxidation highly depends on CH₄ concentrations, confirming a strong substrate control of CH₄ oxidation (e.g. Guérin and Abril, 2007). CH₄ concentrations in oxic waters were higher in spring than in summer, with means of 5 and 1 μmol L⁻¹ at depths where oxidation was measured, respectively. These important differences may be explained by the mixed layer depth of the water column. In spring, the water column was anoxic deeper, so CH₄ produced in anoxic waters was anaerobically oxidized over a less important depth than in summer, where the water was anoxic at 7 m. Moreover, higher water temperatures observed in summer might enhance CH₄ oxidation. In spring, a greater amount of CH₄ could thus reach the oxic waters, explaining higher CH₄ concentrations observed, and so higher aerobic CH₄ oxidation rates. Fig. 4a shows the dependence of depth-integrated oxidation rates with the depth of the oxygenated

Table 1

<table>
<thead>
<tr>
<th></th>
<th>CH₄ fluxes (μmol m⁻² d⁻¹)</th>
<th>N₂O fluxes (μmol m⁻² d⁻¹)</th>
<th>CO₂ fluxes (μmol m⁻² d⁻¹)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spring</td>
<td>633</td>
<td>5</td>
<td>Nd</td>
</tr>
<tr>
<td>Summer</td>
<td>1000</td>
<td>18</td>
<td>Nd</td>
</tr>
<tr>
<td>Autumn</td>
<td>564</td>
<td>13</td>
<td>67,000</td>
</tr>
<tr>
<td>Winter</td>
<td>12,482</td>
<td>19</td>
<td>Nd</td>
</tr>
</tbody>
</table>

Table 2

<table>
<thead>
<tr>
<th></th>
<th>Depth-integrated oxidation rates (μmol m⁻² d⁻¹)</th>
<th>Aerobic oxidation (%)</th>
<th>Anaerobic oxidation (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spring</td>
<td>48</td>
<td>79</td>
<td>21</td>
</tr>
<tr>
<td>Summer</td>
<td>67</td>
<td>1</td>
<td>99</td>
</tr>
<tr>
<td>Autumn</td>
<td>70</td>
<td>3</td>
<td>97</td>
</tr>
<tr>
<td>Winter</td>
<td>27</td>
<td>77</td>
<td>23</td>
</tr>
</tbody>
</table>
layer. Depth-integrated oxidation rates were lower when the oxy-
cline was located deeper, so in winter and spring, which shows the
importance of the anaerobic compartment. Also, as shown by
Fig. 4b, higher CH4 oxidation rates correspond to lower CH4 fluxes,
illustrating the importance of CH4 oxidation to prevent CH4 emis-
sions to the atmosphere. In correlation with Fig. 4a and b, Fig. 4c
shows that a deeper oxycline is linked to higher CH4 emis-
sions to the atmosphere. In spring, summer and winter, all the AOM peaks co-
occurred with NO3 consumption peaks. In autumn, only the first
AOM peak observed at 10 m depth co-occurred with the peak of
NO3 consumption. These results strongly suggest the existence of a
coupling between CH4 oxidation and NO3 reduction. However, the
observed NO3 consumption rates are not sufficient to be respon-
sible for the observed AOM rates (Fig. 5a). These calculations are
based on stoichiometry of the following equation, according to
which 8 mol of NO3 are needed for the oxidation of 5 mol of CH4
(Raghoebarsing et al., 2006):

\[5\text{CH}_4 + 8\text{NO}_3 + 8\text{H}^+ \rightarrow 5\text{CO}_2 + 4\text{N}_2 + 14\text{H}_2\text{O} \] \((1) \)

The other electron acceptor present at high concentrations is
SO42-. SO42- concentrations were high throughout all vertical pro-
files, and tended to decrease in anoxic waters, when H2S concen-
trations increased, showing a SO42- reduction zone. In our
incubations, we observed important SO42- consumption rates that
can potentially contribute to the AOM. Indeed, SO42- consump-
tion rates are sufficient to explain AOM rates observed at some depths.
Moreover, when we inhibited sulfate-reducing bacteria by the
addition of Mo, we tended to observe lower AOM rates, strongly
suggesting a coupling between AOM and SO42- reduction. However,
AOM was not fully inhibited, and we can invoke two different reasons to explain this. First, the specific inhibitor used (molybdate)
may not be fully efficient, as suggested by Nauhaus et al. (2005)
who demonstrated that the two distinct archaeal communities
that can potentially contribute to the AOM. Indeed, SO42- consump-
tion rates are sufficient to explain AOM rates observed at some depths.
Moreover, when we inhibited sulfate-reducing bacteria by the
addition of Mo, we tended to observe lower AOM rates, strongly
suggesting a coupling between AOM and SO42- reduction. However,
AOM was not fully inhibited, and we can invoke two different reasons to explain this. First, the specific inhibitor used (molybdate)
may not be fully efficient, as suggested by Nauhaus et al. (2005)
who demonstrated that the two distinct archaeal communities
capable of AOM (ANME-I and ANME-II) reacted differently to
molybdate, with an incomplete inhibition of ANME-I for the same
concentrations of inhibitor. Because we did not perform pyrosequ-
ning analyses in our study, we cannot determine relative
community dominance. A second mechanism to explain why AOM
was not fully inhibited when molybdate was added, is that SDMO is
not the only AOM pathway in the water column of the Dendre stone
pit lake, confirming the potential occurrence of NDMO, as described
above.

We must note that AOM rates calculated on the basis of NO3 and
SO42- consumption rates are potential maximum rates, since we
consider here that NO3 and SO42- reduction occurs only with CH4 as
electron donor, which is unlikely. Heterotrophic denitrifica-
tion and SO42- reduction with organic matter are both more favorable,
even in an environment with high organic matter supply.

We can thus hypothesize that AOM occurred with different
electron acceptors in the Dendre stone pit lake. As NDMO is ther-
modynamically more favorable than SDMO, and as NO3 concen-
trations are relatively high, we suppose that AOM firstly occurs
with NO3 as electron acceptor. When NO3 becomes depleted, AOM
can occur with SO42-, since SDMO is less favorable but SO42-
centration is not the only electron acceptor, since some oxidation
rates cannot be explained by SO42- consumption rates alone (data
points to the left side of the 1:1 line in Fig. 5b). We must note that
calculated AOM rates associated with SO42- are higher than
measured AOM rates, illustrating that not all the SO42- consumption
is linked to CH4 oxidation. Also, calculated AOM rates based on NO3
and SO42- consumption rates are potential maximum rates, since in

\[\text{CH}_4 + \text{SO}_4^{2-} \rightarrow \text{HCO}_3^- + \text{HS}^- + \text{H}_2\text{O} \] \((2) \)

This shows that most of the AOM must be coupled with SO42-
reduction (data points to the right side of the 1:1 line in Fig. 5b), but
that SO42- is not the only electron acceptor, since some oxidation
rates cannot be explained by SO42- consumption rates alone (data
points to the left side of the 1:1 line in Fig. 5b). We must note that
calculated AOM rates associated with SO42- are higher than
measured AOM rates, illustrating that not all the SO42- consump-
tion is linked to CH4 oxidation. Also, calculated AOM rates based on NO3
and SO42- consumption rates are potential maximum rates, since in

![Figure 4](image-url)
our calculations, we consider that all NO$_3^-$ and SO$_4^{2-}$ reduction occurs only with CH$_4$ as electron donor. In any case, NO$_3^-$ can thus be responsible for a part of the AOM not explained by SO$_4^{2-}$ (at the left of the 1:1 line) but it is not sufficient, which means that other electron acceptors must be involved, such as Fe and Mn. Total Fe and Mn concentrations were relatively high in the water column and can thus potentially contribute to AOM. In summer and autumn in particular, higher Fe and Mn concentration peaks co-occurred with high CH$_4$ oxidation peaks.

Regardless of the electron acceptors, AOM rates in the Dendre stone pit lake were quite high compared to other temperate or boreal lakes reported in literature (Table 3) and must thus contribute to limited atmospheric CH$_4$ emissions. CH$_4$ concentrations in oxic waters were up to 30 μmol L$^{-1}$, which can be linked to the mixing of the water column. The annual average of CH$_4$ concentrations in surface waters was 8.1 μmol L$^{-1}$ which is one order of magnitude higher than the global average of lakes of the same size class (0.01–0.1 km2) of 0.7 μmol L$^{-1}$ reported by Holgerson and Raymond (2016). The corresponding median of CH$_4$ emission to the atmosphere (816 μmol m$^{-2}$ d$^{-1}$) in the Dendre Lake is also high compared to other lakes globally, since the global median of diffusive CH$_4$ fluxes from lakes at the same latitude reported by Bastviken et al. (2011) is 263 μmol m$^{-2}$ d$^{-1}$, while the global flux for lakes of the same size class reported by Holgerson and Raymond (2016) is 279 μmol m$^{-2}$ d$^{-1}$.

Bastviken et al. (2011) also reported fluxes due to the emission of CH$_4$ stored in the water column during lake overturn. The median value of these fluxes plus the diffusive fluxes is estimated to 1000 μmol m$^{-2}$ d$^{-1}$ (Bastviken et al., 2011) that is lower than CH$_4$ emissions estimated in the Dendre stone pit lake in winter (12,482 μmol m$^{-2}$ d$^{-1}$). So high CH$_4$ fluxes in winter in the Dendre stone pit lake can be explained by an accumulation of CH$_4$ in anoxic waters during the stratification periods, which are mixed with the oxic waters during lake overturn, as described above. As water temperatures are low, microbial CH$_4$ oxidation in winter is reduced and does not consume the high stock of CH$_4$, which can escape to the atmosphere. High CH$_4$ production in the water column of the Dendre Lake can be explained by a high primary production due to high nutrient availability. Indeed, high DIN (57 μmol L$^{-1}$) and PO$_4^{3-}$ (2 μmol L$^{-1}$) concentrations observed in surface waters (at 5 m) illustrate the eutrophic status of the lake. This is not surprising considering that this stone pit lake is mainly fed by ground waters, which are enriched in DIN from extensive fertilizer use on cropland (SPW-DGO3, 2015).

The N$_2$O fluxes were higher in summer, autumn and winter, with a mean of 17 μmol m$^{-2}$ d$^{-1}$. In spring, N$_2$O flux was estimated to 5 μmol m$^{-2}$ d$^{-1}$. Lower N$_2$O flux, linked to lower N$_2$O concentrations in surface waters observed in spring, might be linked to higher bacterial activity and therefore more efficient denitrification, leading to a stronger N$_2$O consumption. Compared with fluxes reported by Huttunen et al. (2003) for five boreal lakes, N$_2$O fluxes measured in the Dendre stone pit lake were very high, and no negative flux was observed, suggesting that the water column was a source of N$_2$O for the atmosphere all the year. These higher N$_2$O emissions can also be related to high DIN concentrations.

In conclusion, this study demonstrates the occurrence of AOM in the water column of a small freshwater body. Results show that AOM occurred with SO$_4^{2-}$ as electron acceptor, but also strongly suggest that AOM also occurred with NO$_3^-$ reduction. Further studies are nevertheless needed to clearly identify these processes, such as incubations spiked with the addition of the different potential electron acceptors for AOM and description of the microbial community composition. In this study, we also demonstrate that a flooded quarry can be a significant source of atmospheric greenhouse gases. While the majority of eutrophic agriculturally impacted lakes are net CO$_2$ sinks (Balmer and Downing, 2011), we suggest that these systems can be extreme emitters of other potent greenhouse gases such as CH$_4$ and N$_2$O, in response to nitrogen enrichment and high primary productivity.

Table 3

<table>
<thead>
<tr>
<th>Lake</th>
<th>AOM rate</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dendre</td>
<td>Seasonal means: 2 – 5, Maximum: 15</td>
<td>This study</td>
</tr>
<tr>
<td>Marń (Sweden)</td>
<td>2.2</td>
<td>Bastviken et al. (2002)</td>
</tr>
<tr>
<td>Illersjoen (Sweden)</td>
<td>1.3–3.0</td>
<td>Bastviken et al. (2002)</td>
</tr>
<tr>
<td>Pavin (France)</td>
<td>0.4</td>
<td>Lopes et al. (2011)</td>
</tr>
<tr>
<td>Mendota (US)</td>
<td>5.8</td>
<td>Harris and Hanson (1980)</td>
</tr>
<tr>
<td>Big Soda (US)</td>
<td>0.06</td>
<td>Iversen et al. (1987)</td>
</tr>
<tr>
<td>Mono (US)</td>
<td>0.08</td>
<td>Oremland et al. (1993)</td>
</tr>
<tr>
<td>Tanganyika (Africa)</td>
<td>0.24–1.8</td>
<td>Rudd et al. (1974)</td>
</tr>
</tbody>
</table>
Acknowledgements

We thank Jean-Pierre Carlier and the members of the diving club “Les Otaries” for their invaluable help in sampling, Professor Jean-Pierre Thomé (University of Liège, ULg) for access to the multi-plate reader, Sandro Petrovic and Marc-Vincent Commarieu (ULg) for help in sampling, Renzo Biondo (ULg) for help in analyses, and two anonymous reviewers for comments and suggestions on the initial submission. A.V.B. is a senior research associate to the FNRS. F.A.E.R received a PhD grant from FNRS (Fonds pour la Formation à la Recherche dans l’Industrie et dans l’Agriculture).

References

Gu
Matano. Geobiology 9, 61

Nedwell, D.B., 2011. Dissimilatory reduction of nitrate to ammonium (DNRA)

F.A.E.R received a PhD grant from FNRS (Fonds pour la Formation à la Recherche dans l’Industrie et dans l’Agriculture).