Albracht, S.P.J. 1994. Nickel hydrogenases: In search of the active site. Biochim. Biophys. Acta 1188, 167-204.
Alric, J. 2014. Redox and ATP control of photosynthetic cyclic electron flow in Chlamydomonas reinhardtii. II. Involvement of the PGR5-PGRL1 pathway under anaerobic conditions. Biochim. Biophys. Acta 1837, 825-834.
Alric, J., Lavergne, J., Rappaport, F. 2010. Redox and ATP control of photosynthetic cyclic electron flow in Chlamydomonas reinhardtii. I. Aerobic conditions. Biochim. Biophys. Acta 1797, 44-51.
Ananyev, G.M., Skizim, N.J., Dismukes, G.C. 2012. Enhancing biological hydrogen production from cyanobacteria by removal of excreted products. J. Biotechnol. 162, 97-104.
Antal, T.K., Lindblad, P. 2005. Production of H2 by sulphur-deprived cells of the unicellular cyanobacteria Gloeocapsa alpicola and Synechocystis sp. PCC 6803 during dark incubation with methane or at various extracellular pH. J. Appl. Microbiol. 98, 114-120.
Appel, J., Phunpruch, S., Steinmüller, K., Schulz, R. 2000. The bidirectional hydrogenase of Synechocystis sp. PCC 6803 works as an electron valve during photosynthesis. Arch. Microbiol. 173, 333-338.
Aryal, U.K., Callister, S.J., Mishra, S., Zhang, X., Shutthanandan, J.I., Angel, T.E., Shukla, A.K. et al. 2013. Proteome analyses of strains ATCC 51142 and PCC 7822 of the diazotrophic cyanobacterium Cyanothece sp. under culture conditions resulting in enhanced H2 production. Appl. Environ. Microbiol. 79, 1070-1077.
Baker, N.R. 2008. Chlorophyll fluorescence: A probe of photosynthesis in vivo. Annu. Rev. Plant Biol. 59, 89-113.
Baltz, A., Dang, K.-V., Beyly, A., Auroy, P., Richaud, P., Cournac, L., Peltier, G. 2014. Plastidial expression of type II NAD(P)H dehydrogenase increases the reducing state of plastoquinones and hydrogen photoproduction rate by the indirect pathway in Chlamydomonas reinhardtii. Plant Physiol. 165, 1344-1352.
Bandyopadhyay, A., Stöckel, J., Min, H., Sherman, L.A., Pakrasi, H.B. 2010. High rates of photobiological H2 production by a cyanobacterium under aerobic conditions. Nat. Commun. 1, 139.
Bayro-Kaiser, V., Nelson, N. 2016. Temperature-sensitive PSII: A novel approach for sustained photosynthetic hydrogen production. Photosynth. Res. 1-9.
Blankenship, R.E., Chen, M. 2013. Spectral expansion and antenna reduction can enhance photosynthesis for energy production. Curr. Opin. Chem. Biol. 17, 457-461.
Bothe, H., Newton, W.E. 2014. Nitrogenase-dependent hydrogen production by cyanobacteria. In Microbial Bioenergy: Hydrogen Production, ed. D. Zannoni, R. De Philippis. Dordrecht, the Netherlands: Springer, pp. 137-153.
Cardol, P., Forti, G., Finazzi, G. 2011. Regulation of electron transport in microalgae. Biochim. Biophys. Acta 1807, 912-918.
Carrieri, D., Wawrousek, K., Eckert, C., Yu, J., Maness, P.-C. 2011. The role of the bidirectional hydrogenase in cyanobacteria. Bioresour. Technol. 102, 8368-8377.
Chochois, V., Dauvillée, D., Beyly, A., Tolleter, D., Cuiné, S., Timpano, H., Ball, S., Cournac, L., Peltier, G. 2009. Hydrogen production in Chlamydomonas: Photosystem II-dependent and -independent pathways differ in their requirement for starch metabolism. Plant Physiol. 151, 631-640.
Cohen, J., Kim, K., Posewitz, M., Ghirardi, M.L., Schulten, K., Seibert, M., King, P. 2005. Molecular dynamics and experimental investigation of H2 and O2 diffusion in [Fe]-hydrogenase. Biochem. Soc. Trans. 33, 80-82.
Cournac, L., Guedeney, G., Peltier, G., Vignais, P.M. 2004. Sustained photoevolution of molecular hydrogen in a mutant of Synechocystis sp. strain PCC 6803 deficient in the type I NADPH-dehydrogenase complex. J. Bacteriol. 186, 1737-1746.
Cournac, L., Mus, F., Bernard, L., Guedeney, G., Vignais, P., Peltier, G. 2002. Limiting steps of hydrogen production in Chlamydomonas reinhardtii and Synechocystis PCC 6803 as analysed by light-induced gas exchange transients. Int. J. Hydrog. Energy 27, 1229-1237.
DalCorso, G., Pesaresi, P., Masiero, S., Aseeva, E., Schünemann, D., Finazzi, G., Joliot, P., Barbato, R., Leister, D. 2008. A complex containing PGRL1 and PGR5 is involved in the switch between linear and cyclic electron flow in Arabidopsis. Cell 132, 273-285.
Dang, K.-V., Plet, J., Tolleter, D., Jokel, M., Cuiné, S., Carrier, P., Auroy, P. et al. 2014. Combined increases in mitochondrial cooperation and oxygen photoreduction compensate for deficiency in cyclic electron flow in Chlamydomonas reinhardtii. Plant Cell 26, 3036-3050.
Degrenne, B., Pruvost, J., Legrand, J. 2011a. Effect of prolonged hypoxia in autotrophic conditions in the hydrogen production by the green microalga Chlamydomonas reinhardtii in photobioreactor. Bioresour. Technol. 102, 1035-1043.
Degrenne, B., Pruvost, J., Titica, M., Takache, H., Legrand, J. 2011b. Kinetic modeling of light limitation and sulfur deprivation effects in the induction of hydrogen production with Chlamydomonas reinhardtii. Part II: Definition of model-based protocols and experimental validation. Biotechnol. Bioeng. 108, 2288-2299.
Doebbe, A., Rupprecht, J., Beckmann, J., Mussgnug, J.H., Hallmann, A., Hankamer, B., Kruse, O. 2007. Functional integration of the HUP1 hexose symporter gene into the genome of C. reinhardtii: Impacts on biological H2 production. J. Biotechnol. 131, 27-33.
Dutta, D., De, D., Chaudhuri, S., Bhattacharya, S.K. 2005. Hydrogen production by cyanobacteria. Microb. Cell Factories 4, 36.
Florin, L., Tsokoglou, A., Happe, T. 2001. A novel type of iron hydrogenase in the green alga Scenedesmus obliquus is linked to the photosynthetic electron transport chain. J. Biol. Chem. 276, 6125-6132.
Formighieri, C., Franck, F., Bassi, R. 2012. Regulation of the pigment optical density of an algal cell: Filling the gap between photosynthetic productivity in the laboratory and in mass culture. J. Biotechnol. 162, 115-123.
Fouchard, S., Hemschemeier, A., Caruana, A., Pruvost, J., Legrand, J., Happe, T., Peltier, G., Cournac, L. 2005. Autotrophic and mixotrophic hydrogen photoproduction in sulfurdeprived Chlamydomonas cells. Appl. Environ. Microbiol. 71, 6199-6205.
Franck, F., Juneau, P., Popovic, R. 2002. Resolution of the photosystem I and photosystem II contributions to chlorophyll fluorescence of intact leaves at room temperature. Biochim. Biophys. Acta 1556, 239-246.
Frey, M. 2002. Hydrogenases: Hydrogen-activating enzymes. ChemBioChem 3, 153-160.
Gaffron, H., Rubin, J. 1942. Fermentative and photochemical production of hydrogen in algae. J. Gen. Physiol. 26, 219-240.
Ghirardi, M.L., Togasaki, R.K., Seibert, M. 1997. Oxygen sensitivity of algal H2-production. In Biotechnology for Fuels and Chemicals, ed. B.H. Davison, C.E. Wyman, M. Finkelstein. New York: Humana Press, pp. 141-151.
Ghysels, B., Franck, F. 2010. Hydrogen photo-evolution upon S deprivation stepwise: An illustration of microalgal photosynthetic and metabolic flexibility and a step stone for future biotechnological methods of renewable H2 production. Photosynth. Res. 106, 145-154.
Ghysels, B., Godaux, D., Matagne, R.F., Cardol, P., Franck, F. 2013. Function of the chloroplast hydrogenase in the microalga Chlamydomonas: The role of hydrogenase and state transitions during photosynthetic activation in anaerobiosis. PLoS One 8, e64161.
Godaux, D., Bailleul, B., Berne, N., Cardol, P. 2015. Induction of photosynthetic carbon fixation in anoxia relies on hydrogenase activity and proton-gradient regulationlike1-mediated cyclic electron flow in Chlamydomonas reinhardtii. Plant Physiol. 168, 648-658.
Godaux, D., Emonds-Alt, B., Berne, N., Ghysels, B., Alric, J., Remacle, C., Cardol, P. 2013. A novel screening method for hydrogenase-deficient mutants in Chlamydomonas reinhardtii based on in vivo chlorophyll fluorescence and photosystem II quantum yield. Int. J. Hydrog. Energy 38, 1826-1836.
Godman, J.E., Molnár, A., Baulcombe, D.C., Balk, J. 2010. RNA silencing of hydrogenase(-like) genes and investigation of their physiological roles in the green alga Chlamydomonas reinhardtii. Biochem. J. 431, 345-352.
Gutekunst, K., Chen, X., Schreiber, K., Kaspar, U., Makam, S., Appel, J. 2014. The bidirectional NiFe-hydrogenase in Synechocystis sp. PCC 6803 is reduced by flavodoxin and ferredoxin and is essential under mixotrophic, nitrate-limiting conditions. J. Biol. Chem. 289, 1930-1937.
Gutthann, F., Egert, M., Marques, A., Appel, J. 2007. Inhibition of respiration and nitrate assimilation enhances photohydrogen evolution under low oxygen concentrations in Synechocystis sp. PCC 6803. Biochim. Biophys. Acta 1767, 161-169.
Hallenbeck, P.C. 2012. Hydrogen production by cyanobacteria. In Microbial Technologies in Advanced Biofuels Production, ed. P.C. Hallenbeck. Boston: Springer, pp. 15-28.
Happe, R.P., Roseboom, W., Pierik, A.J., Albracht, S.P.J., Bagley, K.A. 1997. Biological activation of hydrogen. Nature 385, 126-126.
Happe, T., Hemschemeier, A., Winkler, M., Kaminski, A. 2002. Hydrogenases in green algae: Do they save the algae’s life and solve our energy problems? Trends Plant Sci. 7, 246-250.
Happe, T., Naber, J.D. 1993. Isolation, characterization and N-terminal amino acid sequence of hydrogenase from the green alga Chlamydomonas reinhardtii. Eur. J. Biochem. 214, 475-481.
Hedderich, R. 2004. Energy-converting [NiFe] hydrogenases from archaea and extremophiles: Ancestors of complex I. J. Bioenerg. Biomembr. 36, 65-75.
Hemschemeier, A., Happe, T. 2011. Alternative photosynthetic electron transport pathways during anaerobiosis in the green alga Chlamydomonas reinhardtii. Biochim. Biophys. Acta 1807, 919-926.
Hemschemeier, A., Melis, A., Happe, T. 2009. Analytical approaches to photobiological hydrogen production in unicellular green algae. Photosynth. Res. 102, 523-540.
Houille-Vernes, L., Rappaport, F., Wollman, F.-A., Alric, J., Johnson, X. 2011. Plastid terminal oxidase 2 (PTOX2) is the major oxidase involved in chlororespiration in Chlamydomonas. Proc. Natl. Acad. Sci. U.S.A. 108, 20820-20825.
Jans, F., Mignolet, E., Houyoux, P.-A., Cardol, P., Ghysels, B., Cuiné, S., Cournac, L., Peltier, G., Remacle, C., Franck, F. 2008. A type II NAD(P)H dehydrogenase mediates lightindependent plastoquinone reduction in the chloroplast of Chlamydomonas. Proc. Natl. Acad. Sci. U.S.A. 105, 20546-20551.
Johnson, X., Steinbeck, J., Dent, R.M., Takahashi, H., Richaud, P., Ozawa, S.-I., Houille-Vernes, L. et al. 2014. Proton gradient regulation 5-mediated cyclic electron flow under ATP- or redox-limited conditions: A study of ΔATPase pgr5 and ΔrbcL pgr5 mutants in the green alga Chlamydomonas reinhardtii. Plant Physiol. 165, 438-452.
Johnson, X., Vandystadt, G., Bujaldon, S., Wollman, F.-A., Dubois, R., Roussel, P., Alric, J., Béal, D. 2009. A new setup for in vivo fluorescence imaging of photosynthetic activity. Photosynth. Res. 102, 85-93.
Joliot, P., Johnson, G.N. 2011. Regulation of cyclic and linear electron flow in higher plants. Proc. Natl. Acad. Sci. U.S.A. 108, 13317-13322.
Jurado-Oller, J.L., Dubini, A., Galván, A., Fernández, E., González-Ballester, D. 2015. Low oxygen levels contribute to improve photohydrogen production in mixotrophic nonstressed Chlamydomonas cultures. Biotechnol. Biofuels 8, 149.
Kessler, E. 1973. Effect of anaerobiosis on photosynthetic reactions and nitrogen metabolism of algae with and without hydrogenase. Arch. Mikrobiol. 93, 91-100.
Khetkorn, W., Khanna, N., Incharoensakdi, A., Lindblad, P. 2013. Metabolic and genetic engineering of cyanobacteria for enhanced hydrogen production. Biofuels 4, 535-561.
Khetkorn, W., Lindblad, P., Incharoensakdi, A. 2012. Inactivation of uptake hydrogenase leads to enhanced and sustained hydrogen production with high nitrogenase activity under high light exposure in the cyanobacterium Anabaena siamensis TISTR 8012. J. Biol. Eng. 6, 19.
Kosourov, S.N., Batyrova, K.A., Petushkova, E.P., Tsygankov, A.A., Ghirardi, M.L., Seibert, M. 2012. Maximizing the hydrogen photoproduction yields in Chlamydomonas reinhardtii cultures: The effect of the H2 partial pressure. Int. J. Hydrog. Energy 37, 8850-8858.
Kosourov, S.N., Ghirardi, M.L., Seibert, M. 2011. A truncated antenna mutant of Chlamydomonas reinhardtii can produce more hydrogen than the parental strain. Int. J. Hydrog. Energy 36, 2044-2048.
Kothari, A., Parameswaran, P., Garcia-Pichel, F. 2014. Powerful fermentative hydrogen evolution of photosynthate in the cyanobacterium Lyngbya aestuarii BL J mediated by a bidirectional hydrogenase. Front. Microbiol. 5, 680.
Kothari, A., Potrafka, R., Garcia-Pichel, F. 2012. Diversity in hydrogen evolution from bidirectional hydrogenases in cyanobacteria from terrestrial, freshwater and marine intertidal environments. J. Biotechnol. 162, 105-114.
Kruse, O., Nixon, P.J., Schmid, G.H., Mullineaux, C.W. 1999. Isolation of state transition mutants of Chlamydomonas reinhardtii by fluorescence video imaging. Photosynth. Res. 61, 43-51.
Kruse, O., Rupprecht, J., Bader, K.-P., Thomas-Hall, S., Schenk, P.M., Finazzi, G., Hankamer, B. 2005. Improved photobiological H2 production in engineered green algal cells. J. Biol. Chem. 280, 34170-34177.
Kumar, K., Mella-Herrera, R.A., Golden, J.W. 2010. Cyanobacterial heterocysts. Cold Spring Harb. Perspect. Biol. 2, a000315.
Laurinavichene, T.V., Kosourov, S.N., Ghirardi, M.L., Seibert, M., Tsygankov, A.A. 2008. Prolongation of H2 photoproduction by immobilized, sulfur-limited Chlamydomonas reinhardtii cultures. J. Biotechnol. 134, 275-277.
Lavorel, J. 1962. Hétérogénéité de la chlorophylle in vivo I. Spectres d’émission de fluorescence. Biochim. Biophys. Acta 60, 510-523.
Lenz, O., Bernhard, M., Buhrke, T., Schwartz, E., Friedrich, B. 2002. The hydrogen-sensing apparatus in Ralstonia eutropha. J. Mol. Microbiol. Biotechnol. 4, 255-262.
Lindberg, P., Schütz, K., Happe, T., Lindblad, P. 2002. A hydrogen-producing, hydrogenasefree mutant strain of Nostoc punctiforme ATCC 29133. Int. J. Hydrog. Energy 27, 1291-1296.
Lindblad, P., Christensson, K., Lindberg, P., Fedorov, A., Pinto, F., Tsygankov, A. 2002. Photoproduction of H2 by wildtype Anabaena PCC 7120 and a hydrogen uptake deficient mutant: From laboratory experiments to outdoor culture. Int. J. Hydrog. Energy 27, 1271-1281.
Lopes Pinto, F.A., Troshina, O., Lindblad, P. 2002. A brief look at three decades of research on cyanobacterial hydrogen evolution. Int. J. Hydrog. Energy 27, 1209-1215.
Masukawa, H., Sakurai, H., Hausinger, R.P., Inoue, K. 2014. Sustained photobiological hydrogen production in the presence of N2 by nitrogenase mutants of the heterocyst-forming cyanobacterium Anabaena. Int. J. Hydrog. Energy 39, 19444-19451.
Mattoo, A.K., Edelman, M. 1987. Intramembrane translocation and posttranslational palmitoylation of the chloroplast 32-kDa herbicide-binding protein. Proc. Natl. Acad. Sci. U.S.A. 84, 1497-1501.
McDermott, J.E., Oehmen, C.S., McCue, L.A., Hill, E., Choi, D.M., Stöckel, J., Liberton, M., Pakrasi, H.B., Sherman, L.A. 2011. A model of cyclic transcriptomic behavior in the cyanobacterium Cyanothece sp. ATCC 51142. Mol. Biosyst. 7, 2407-2418.
Melis, A., Seibert, M., Happe, T. 2004. Genomics of green algal hydrogen research. Photosynth. Res. 82, 277-288.
Melis, A., Zhang, L., Forestier, M., Ghirardi, M.L., Seibert, M. 2000. Sustained photobiological hydrogen gas production upon reversible inactivation of oxygen evolution in the green alga Chlamydomonas reinhardtii. Plant Physiol. 122, 127-136.
Melnicki, M.R., Pinchuk, G.E., Hill, E.A., Kucek, L.A., Fredrickson, J.K., Konopka, A., Beliaev, A.S. 2012. Sustained H2 production driven by photosynthetic water splitting in a unicellular cyanobacterium. mBio 3, e00197-12.
Meuser, J.E., D’Adamo, S., Jinkerson, R.E., Mus, F., Yang, W., Ghirardi, M.L., Seibert, M., Grossman, A.R., Posewitz, M.C. 2012. Genetic disruption of both Chlamydomonas reinhardtii [FeFe]-hydrogenases: Insight into the role of HYDA2 in H2 production. Biochem. Biophys. Res. Commun. 417, 704-709.
Michel, H. 2012. Editorial: The nonsense of biofuels. Angew. Chem. Int. Ed. 51, 2516-2518.
Mignolet, E., Lecler, R., Ghysels, B., Remacle, C., Franck, F. 2012. Function of the chloroplastic NAD(P)H dehydrogenase Nda2 for H2 photoproduction in sulphur-deprived Chlamydomonas reinhardtii. J. Biotechnol. 162, 81-88.
Mikheeva, L.E., Schmitzh, O., Shestakov, S.V., Bothe, H. 1995. Mutants of the cyanobacterium Anabaena variabilis altered in hydrogenase activities. Z. Naturforsch. C 50, 505-510.
Min, H., Sherman, L.A. 2010. Hydrogen production by the unicellular, diazotrophic cyanobacterium Cyanothece sp. strain ATCC 51142 under conditions of continuous light. Appl. Environ. Microbiol. 76, 4293-4301.
Mitchell, P. 1961. Coupling of phosphorylation to electron and hydrogen transfer by a chemiosmotic type of mechanism. Nature 191, 144-148.
Mitchell, P. 1966. Chemiosmotic coupling in oxidative and photosynthetic phosphorylation. Biol. Rev. 41, 445-501.
Mitsui, A., Suda, S. 1995. Alternative and cyclic appearance of H2 and O2 photoproduction activities under non-growing conditions in an aerobic nitrogen-fixing unicellular cyanobacterium Synechococcus sp. Curr. Microbiol. 30, 1-6.
Müller, M., Gorrell, T.E. 1983. Metabolism and metronidazole uptake in Trichomonas vaginalis isolates with different metronidazole susceptibilities. Antimicrob. Agents Chemother. 24, 667-673.
Nicolet, Y., Cavazza, C., Fontecilla-Camps, J.C. 2002. Fe-only hydrogenases: Structure, function and evolution. J. Inorg. Biochem. 91, 1-8.
Nyberg, M., Heidorn, T., Lindblad, P. 2015. Hydrogen production by the engineered cyanobacterial strain Nostoc PCC 7120 ΔhupW examined in a flat panel photobioreactor system. J. Biotechnol. 215, 35-43.
Pape, M., Lambertz, C., Happe, T., Hemschemeier, A. 2012. Differential expression of the Chlamydomonas [FeFe]-hydrogenase-encoding HYDA1 gene is regulated by the copper response regulator. Plant Physiol. 159, 1700-1712.
Peltier, G., Tolleter, D., Billon, E., Cournac, L. 2010. Auxiliary electron transport pathways in chloroplasts of microalgae. Photosynth. Res. 106, 19-31.
Pierik, A.J., Roseboom, W., Happe, R.P., Bagley, K.A., Albracht, S.P.J. 1999. Carbon monoxide and cyanide as intrinsic ligands to iron in the active site of [NiFe]-hydrogenases NiFe(CN)2CO, biology’s way to activate H2. J. Biol. Chem. 274, 3331-3337.
Pilak, O., Mamat, B., Vogt, S., Hagemeier, C.H., Thauer, R.K., Shima, S., Vonrhein, C., Warkentin, E., Ermler, U. 2006. The crystal structure of the apoenzyme of the iron-sulphur cluster-free hydrogenase. J. Mol. Biol. 358, 798-809.
Reddy, K.J., Haskell, J.B., Sherman, D.M., Sherman, L.A. 1993. Unicellular, aerobic nitrogenfixing cyanobacteria of the genus Cyanothece. J. Bacteriol. 175, 1284-1292.
Rühle, T., Hemschemeier, A., Melis, A., Happe, T. 2008. A novel screening protocol for the isolation of hydrogen producing Chlamydomonas reinhardtii strains. BMC Plant Biol. 8, 107.
Schreiber, U., Vidaver, W. 1974. Chlorophyll fluorescence induction in anaerobic Scenedesmus obliquus. Biochim. Biophys. Acta 368, 97-112.
Schütz, K., Happe, T., Troshina, O., Lindblad, P., Leitão, E., Oliveira, P., Tamagnini, P. 2004. Cyanobacterial H(2) production-A comparative analysis. Planta 218, 350-359.
Scoma, A., Krawietz, D., Faraloni, C., Giannelli, L., Happe, T., Torzillo, G. 2012. Sustained H2 production in a Chlamydomonas reinhardtii D1 protein mutant. J. Biotechnol. 157, 613-619.
Seibert, M., Benson, D.K., Flynn, T.M. 2001. Method and apparatus for rapid biohydrogen phenotypic screening of microorganisms using a chemochromic sensor. U.S. Patent 6277589. Midwest Research Institute.
Serebriakova, L., Zorin, N.A., Lindblad, P. 1994. Reversible hydrogenase in Anabaena variabilis ATCC 29413. Arch. Microbiol. 161, 140-144.
Sherman, L.A., Min, H., Toepel, J., Pakrasi, H.B. 2010. Better living through Cyanothece-Unicellular diazotrophic cyanobacteria with highly versatile metabolic systems. In Recent Advances in Phototrophic Prokaryotes, ed. P.C. Hallenbeck. New York: Springer, pp. 275-290.
Shima, S., Thauer, R.K. 2007. A third type of hydrogenase catalyzing H2 activation. Chem. Rec. 7, 37-46.
Smith, L.A., Hill, S., Yates, M.G. 1976. Inhibition by acetylene of conventional hydrogenase in nitrogen-fixing bacteria. Nature 262, 209-210.
Steinbeck, J., Nikolova, D., Weingarten, R., Johnson, X., Richaud, P., Peltier, G., Hermann, M., Magneschi, L., Hippler, M. 2015. Deletion of proton gradient regulation 5 (PGR5) and PGR5-like 1 (PGRL1) proteins promote sustainable light-driven hydrogen production in Chlamydomonas reinhardtii due to increased PSII activity under sulfur deprivation. Front. Plant Sci. 6.
Stöckel, J., Welsh, E.A., Liberton, M., Kunnvakkam, R., Aurora, R., Pakrasi, H.B. 2008. Global transcriptomic analysis of Cyanothece 51142 reveals robust diurnal oscillation of central metabolic processes. Proc. Natl. Acad. Sci. U.S.A. 105, 6156-6161.
Stripp, S.T., Goldet, G., Brandmayr, C., Sanganas, O., Vincent, K.A., Haumann, M., Armstrong, F.A., Happe, T. 2009. How oxygen attacks [FeFe] hydrogenases from photosynthetic organisms. Proc. Natl. Acad. Sci. U.S.A. 106, 17331-17336.
Thauer, R.K. 1998. Biochemistry of methanogenesis: A tribute to Marjory Stephenson. 1998
Toepel, J., Welsh, E., Summerfield, T.C., Pakrasi, H.B., Sherman, L.A. 2008. Differential transcriptional analysis of the cyanobacterium Cyanothece sp. strain ATCC 51142 during light-dark and continuous-light growth. J. Bacteriol. 190, 3904-3913.
Tolleter, D., Ghysels, B., Alric, J., Petroutsos, D., Tolstygina, I., Krawietz, D., Happe, T. et al. 2011. Control of hydrogen photoproduction by the proton gradient generated by cyclic electron flow in Chlamydomonas reinhardtii. Plant Cell 23, 2619-2630.
Torzillo, G., Scoma, A., Faraloni, C., Ena, A., Johanningmeier, U. 2009. Increased hydrogen photoproduction by means of a sulfur-deprived Chlamydomonas reinhardtii D1 protein mutant. Int. J. Hydrog. Energy 34, 4529-4536.
Torzillo, G., Scoma, A., Faraloni, C., Giannelli, L. 2015. Advances in the biotechnology of hydrogen production with the microalga Chlamydomonas reinhardtii. Crit. Rev. Biotechnol. 35, 485-496.
Tredici, M.R., Zittelli, G.C. 1998. Efficiency of sunlight utilization: Tubular versus flat photobioreactors. Biotechnol. Bioeng. 57, 187-197.
Tsygankov, A., Kosourov, S., Tolstygina, I., Ghirardi, M., Seibert, M. 2006. Hydrogen production by sulfur-deprived Chlamydomonas reinhardtii under photoautotrophic conditions. Int. J. Hydrog. Energy 31, 1574-1584.
Tsygankov, A.A., Fedorov, A.S., Kosourov, S.N., Rao, K.K. 2002. Hydrogen production by cyanobacteria in an automated outdoor photobioreactor under aerobic conditions. Biotechnol. Bioeng. 80, 777-783.
Tsygankov, A.A., Hall, D.O., Liu, J., Rao, K.K. 1998. An automated helical photobioreactor incorporating cyanobacteria for continuous hydrogen production. In Biohydrogen. Berlin: Springer, pp. 431-440.
Vignais, P.M., Billoud, B. 2007. Occurrence, classification, and biological function of hydrogenases: An overview. Chem. Rev. 107, 4206-4272.
Vignais, P.M., Billoud, B., Meyer, J. 2001. Classification and phylogeny of hydrogenases. FEMS Microbiol. Rev. 25, 455-501.
Vogt, S., Lyon, E.J., Shima, S., Thauer, R.K. 2007. The exchange activities of [Fe] hydrogenase (iron-sulfur-cluster-free hydrogenase) from methanogenic archaea in comparison with the exchange activities of [FeFe] and [NiFe] hydrogenases. JBIC J. Biol. Inorg. Chem. 13, 97-106.
Volbeda, A., Charon, M.-H., Piras, C., Hatchikian, E.C., Frey, M., Fontecilla-Camps, J.C. 1995. Crystal structure of the nickel-iron hydrogenase from Desulfovibrio gigas. Nature 373, 580-587.
Volgusheva, A., Styring, S., Mamedov, F. 2013. Increased photosystem II stability promotes H2 production in sulfur-deprived Chlamydomonas reinhardtii. Proc. Natl. Acad. Sci. U.S.A. 110, 7223-7228.
Walker, D. 1992. Tansley review no. 36 excited leaves. New Phytol. 121, 325-345.
Wang, Y., Stessman, D.J., Spalding, M.H. 2015. The CO2 concentrating mechanism and photosynthetic carbon assimilation in limiting CO2: How Chlamydomonas works against the gradient. Plant J. 82, 429-448.
Wecker, M.S.A., Meuser, J.E., Posewitz, M.C., Ghirardi, M.L. 2011. Design of a new biosensor for algal H2 production based on the H2-sensing system of Rhodobacter capsulatus. Int. J. Hydrog. Energy 36, 11229-11237.
Weissman, J.C., Benemann, J.R. 1977. Hydrogen production by nitrogen-starved cultures of Anabaena cylindrica. Appl. Environ. Microbiol. 33, 123-131.
Welkie, D., Zhang, X., Markillie, M.L., Taylor, R., Orr, G., Jacobs, J., Bhide, K. et al. 2014. Transcriptomic and proteomic dynamics in the metabolism of a diazotrophic cyanobacterium, Cyanothece sp. PCC 7822 during a diurnal light-dark cycle. BMC Genomics 15, 1185.
Wobbe, L., Nixon, P.J. 2013. The mTERF protein MOC1 terminates mitochondrial DNA transcription in the unicellular green alga Chlamydomonas reinhardtii. Nucleic Acids Res. 41, 6553-6567.
Wykoff, D.D., Davies, J.P., Melis, A., Grossman, A.R. 1998. The regulation of photosynthetic electron transport during nutrient deprivation in Chlamydomonas reinhardtii. Plant Physiol. 117, 129-139.
Zehr, J.P., Waterbury, J.B., Turner, P.J., Montoya, J.P., Omoregie, E., Steward, G.F., Hansen, A., Karl, D.M. 2001. Unicellular cyanobacteria fix N2 in the subtropical North Pacific Ocean. Nature 412, 635-638.
Zhang, L., Happe, T., Melis, A. 2002. Biochemical and morphological characterization of sulfur-deprived and H2-producing Chlamydomonas reinhardtii (green alga). Planta 214, 552-561.
Zhang, L., Melis, A. 2002. Probing green algal hydrogen production. Philos. Trans. R. Soc. B Biol. Sci. 357, 1499-1511.
Zhang, X., Sherman, D.M., Sherman, L.A. 2014. The uptake hydrogenase in the unicellular diazotrophic cyanobacterium Cyanothece sp. strain PCC 7822 protects nitrogenase from oxygen toxicity. J. Bacteriol. 196, 840-849.