Ahsan, N., Faruque, K., Shamma, F., Islam, N., & Akhand, A. A. (2012). Arsenic adsorption by bacterial extracellular polymeric substances. Bangladesh Journal of Microbiology, 28, 80–83.
Audry, S., Blanc, G., Schäfer, J., Chaillou, G., & Robert, S. (2006). Early diagenesis of trace metals (Cd, Cu Co, Ni, U, Mo, and V) in the freshwater reaches of a macrotidal estuary. Geochimica et Cosmochimica Acta, 70, 2264–2228.
Bender, J., Lee, R. F., & Phillips, P. (1995). Uptake and transformation of metals and metalloids by microbial mats and their use in bioremediation. Journal of Industrial Microbiology, 14, 113–118.
Berner, R. A. (1980) Early diagenesis: A theoretical approach, Princeton, NJ: Princeton University Press.
Beveridge, T. J., & Doyle, R. J. (1989). Metal ions and Bacteria. New York: Wiley.
Bhaskar, P. V., & Bhosle, N. B. (2006). Bacterial extracellular polymeric substance (EPS): a carrier of heavy metals in the marine food-chain. Environment International, 32, 191–198.
Braissant, O., Decho, A. W., Dupraz, C., Glunk, C., Przekop, R. M., & Visscher, P. T. (2007). Exopolymeric substances of sulfate-reducing bacteria: Interactions with calcium at alkaline pH and implication for formation of carbonate minerals. Geobiology, 5, 401–411.
Braissant, O., Decho, A. W., Przekop, K. M., Gallagher, K. L., Glunk, C., Dupraz, C., & Visscher, P. T. (2009). Characteristics and turnover of exopolymeric substances in a hypersaline microbial mat. FEMS Microbiology Ecology, 67, 293–307.
Buick, R. (1992). The antiquity of oxygenic photosynthesis: Evidence from stromatolites in sulphate-deficient Archaean lakes. Science, 255, 74–77.
Caumette, P., Matheron, R., Raymond, N., & Relexans, J. C. (1994). Microbial mats in hypersaline ponds of Mediterranean salterns (Salins-de-Giraud, France). FEMS Microbiology Ecology, 13, 273–286.
Comans, R. N. J., & Middelburg, J. J. (1987). Sorption of trace metals on calcite: Applicability of the surface precipitation model. Geochimica et Cosmochimica Acta, 51, 2587–2591.
Davis, J. A., Fuller, C. C., & Cook, A. D. (1987). A model for trace metal sorption processes at the calcite surface: Adsorption of Cd 2 + and subsequent solid solution formation. Geochimica et Cosmochimica Acta, 51, 1477–1490.
Davison, W., Fones, G. R., & Grime, G. W. (1997). Dissolved metals in surface sediment and a microbial mat at 100-μm resolution. Nature, 387, 885–888.
Decho, A. W. (2000). Microbial biofilms in intertidal systems: An overview. Continental Shelf Research, 20, 1257–1273.
Decho, A. W., Visscher, P. T., & Reid, R. P. (2005). Production and cycling of natural microbial exopolymers (EPS) within a marine stromatolite. PALAEO, 219, 71–86.
Denk, W., Strickler, J. H., & Webb, W. W. (1990). 2-Photon laser scanning fluorescence microscopy. Science, 248, 73–76.
Des Marais, D. J. (1995). The biogeochemistry of hypersaline microbial mats. In Advances in microbial ecology (pp. 251–274). New York: Springer, US.
Dewhurst, D. N., Yang, Y., & Aplin, A. C. (1999). Permeability and fluid flow in natural mudstones. Geological Society, London, Special Publications, 158(1), 23–43.
Di Toro, D. M., Mahony, J. D., Hansen, D. J., Scott, K. J., Carlson, A. R., & Ankley, G. T. (1992). Acid volatile sulfide predicts the acute toxicity of cadmium and nickel in sediments. Environmental Science & Technology, 26(1), 96–101.
Dillon, J. G., Miller, S., Bebout, B., Hullar, M., Pinel, N., & Stahl, D. A. (2009). Spatial and temporal variability in a stratified hypersaline microbial mat. FEMS Microbiology Ecology, 68, 46–58.
Douglas, S., & Beveridge, T. J. (1998). Mineral formation by bacteria in natural communities. FEMS Microbiology Ecology, 26, 79–88.
Dubois, M., Gilles, K. A., Hamilton, J. K., Rebers, P. A., & Smith, F. (1956). Colorimetric method for determination of sugars and related substances. Analytical Chemistry, 28, 350–356.
Dupraz, C., Reid, R. P., Braissant, O., Decho, A. W., Norman, R. S., & Visscher, P. T. (2009). Processes of carbonate precipitation in modern microbial mats. Earth-Science Reviews, 96, 141–162.
Dupraz, C., & Visscher, P. T. (2005). Microbial lithification in marine stromatolites and hypersaline mats. Trends in Microbiology, 13, 429–438.
Dupraz, C., Visscher, P. T., Baumgartner, L. K., & Reid, R. P. (2004). Microbe–mineral interactions: Early carbonate precipitation in a hypersaline lake (Eleuthera Island, Bahamas). Sedimentology, 51, 745–765.
Elderfield, H., Bertram, C. J., & Erez, J. (1996). A biomineralization model for the incorporation of trace elements into foraminiferal calcium carbonate. Earth and Planetary Science Letters, 142, 409–423.
Farías, M. E., Rascovan, N., Toneatti, D. M., Albarracín, V. H., Flores, M. R., Poiré, D. G., … Polerecky, L. (2013). The discovery of stromatolites developing at 3570 m above sea level in a high-altitude volcanic lake Socompa, Argentinean Andes. PloS One, 8, e53497.
Ferris, F. G. (2000). Microbe-metal interactions in sediments. In: Microbial Sediments (pp. 121–126). New York: Springer, Berlin Heidelberg.
Flemming, H.-C., & Wingender, J. (2010). The biofilm matrix. Nature Reviews, 8, 623–633.
Froelich, P. N., Klinkhammer, G. P., Bender, M. L., Luedtke, N. A., Heath, G. R., Cullen, D., … Maynard, V. (1979). Early oxidation of organic matter in pelagic sediments of the eastern equatorial Atlantic: Suboxic diagenesis. Geochimica et Cosmochimica Acta, 43, 1075–1090.
Gascoyne, M. (1983). Trace-element partition coefficients in the calcite-water system and their paleoclimatic significance in cave studies. Journal of Hydrology, 61, 213–222.
Gérard, E., Ménez, B., Couradeau, E., Moreira, D., Benzerara, K., Tavera, R., & Lopez-Garcia, P. (2013). Specific carbonate-microbe interactions in the modern microbialites of Lake Alchichica (Mexico). The ISME Journal, 7, 1–13.
Glunk, C., Dupraz, C., Braissant, O., Gallagher, K., Verrecchia, E., & Visscher, P. T. (2011). Microbially mediated carbonate precipitation in a hypersaline lake, Big Pond (Eleuthera, Bahamas). Sedimentology, 58, 720–736.
Gribble, G. W. (1999). The diversity of naturally occuring organobromine compounds. Chemical Society Review, 28, 335–346.
Gudhka, R. K., Neilan, B. A., & Burns, B. P. (2015). Adaptation, ecology, and evolution of the halophilic stromatolite archaeon Halococcus hamelinensis inferred through genome analyses. Archaea, 2015, doi:10.1155/2015/241608.
Guezennec, J., Moppert, X., Raguenes, G., Richert, L., Costa, B., & Simon-Colin, S. (2011). Microbial mats in French Polynesia and their biotechnological applications. Process Biochemistry, 46, 16–22.
Guibaud, G., Comte, S., Bordas, F., Dupuy, S., & Baudu, M. (2005). Comparison of complexation potential of extracellular polymeric substances (EPS), extracted from activated sludges and produced by pure bacteria strains, for cadmium, lead and nickel. Chemosphere, 59, 629–638.
Guibaud, G., Tixier, N., Bouju, A., & Baudu, M. (2003). Relation between extracellular polymers’ composition and its ability to complex Cd, Cu and Pb. Chemosphere, 52, 1701–1710.
Harrisson, J. J., Ceri, H., & Turner, R. J. (2007). Multimetal resistance and tolerance in microbial biofilms. Nature Reviews Microbiology, 5, 928–938.
Harvey, G. R. (1980). A study of the chemistry of iodine and bromine in marine sediments. Marine Chemistry, 8, 327–332.
Hearty, P. J. (1998). The geology of Eleuthera Island, Bahamas: A Rosetta Stone of Quaternary stratigraphy and sea-level history. Quaternary Science Reviews, 17, 333–355.
Hinrichs, K. U. (2002). Microbial fixation of methane carbon at 2.7 Ga: Was an anaerobic mechanism possible? Geochemistry, Geophysics, Geosystems, 3, 1–10.
Huerta-Diaz, M. A., Carignan, R., & Tessier, A. (1993). Measurement of trace metals associated with acid volatile sulfides and pyrite in organic freshwater sediments. Environmental science & technology, 27(12), 2367–2372.
Huerta-Diaz, M. A., Delgadillo-Hinojosa, F., Otero, X. L., Hernandez-Ayon, J. M., Segovia-Zavala, J. A., Galindo-Bect, M. S., & Amaro-Franco, E. (2011). Iron and trace metals in microbial mats and underlying sediments: Results from Guerero Negro saltern, Baja Califronia Sur, Mexico. Aquatic Geochemistry, 17, 603–628.
Huerta-Diaz, M. A., Delgadillo-Hinojosa, F., Siqueiros-Valencia, A., Valdivieso-Ojeda, J., Reimer, J. J., & Segovia-Zavala, J. A. (2012). Millimeter-scale resolution of trace metal distributions in microbial mats from a hypersaline environment in Baja California, Mexico. Geobiology, 10, 531–547.
Huerta-Diaz, M. A., & Morse, J. W. (1990). A quantitative method for determination of trace metal concentrations in sedimentary pyrite. Marine Chemistry, 29, 119–144.
Huerta-Diaz, M. A., & Morse, J. W. (1992). Pyritisation of trace metals in anoxic marine sediments. Geochimica et Cosmochimica Acta, 56, 2681–2702.
Hughes, M. N., & Poole, R. K. (1989). Metals and Micro-organisms, Vol. 412. London: Chapman and Hall.
Jørgensen, B. B. (1994). Sulfate reduction and thiosulfate transformations in a cyanobacterial mat during a diel oxygen cycle. FEMS Microbiology Ecology, 13, 303–3121.
Jørgensen, B. B. (2001). Biogeochemistry: Space for hydrogen. Nature, 412, 286–289.
Julien, C., Laurent, E., Legube, B., Thomassin, J. H., Mondamert, L., & Labanowski, J. (2014). Investigation on the iron-uptake by natural biofilms. Water Research, 50, 212–220.
Kouduka, M., Suko, T., Morono, Y., Inagaki, F., Ito, K., & Suzuki, Y. (2012). A new DNA extraction method by controlled alkaline treatments from consolidated subsurface sediments. FEMS Microbiology Letters, 326(1), 47–54.
Krumbein, W. E., Cohen, Y., & Shilo, M. (1977). Solar Lake (Sinai). 4. Stromatolitic cyanobacterial mats. Limnology and Oceanography, 22, 635–656.
Krumbein, W. E., Paterson, D. M., & Stal, L. J. (1994). Biostabilization of sediments (pp.526). Oldenburg, Germany: BIS Verlag.
Kulp, T. R., Hoeft, S. E., Madigan, M. T., Hollibaugh, J. T., Fisher, J. C., Stolz, J. F., … Oremland, R. S. (2008). Arsenic(III) fuels anoxygenic photosynthesis in hot springs biofilms from Mono Lake, California. Science, 321, 967–970.
Lalonde, S. V., Amskold, L. A., Warren, L. A., & Konhauser, K. O. (2007). Surface chemical reactivity and metal adsorptive properties of natural cyanobacterial mats from an alkaline hydrothermal spring Yellowstone National Park. Chemical Geology, 243, 36–52.
Lapp, B., & Balzer, W. (1993). Early diagenesis of trace metals used as an indicator of past productivity changes in coastal sediments. Geochimica et Cosmochimica Acta, 57, 4639–4652.
Leri, A. C., Hakala, J. A., Marcus, M. A., Lanzirotti, A., Reddy, C. M., & Myneni, S. C. B. (2010). Natural organobromine in marine sediments: New evidence of biogeochemical Br cycling. Global Biogeochemical Cycles, 24, GB4017, doi:10.1029/2010GB003794
Liu, Y., Lam, M. C., & Fang, H. H. P. (2001). Adsorption of heavy metals by EPS of activated sludge. Water Science and Technology, 43, 59–66.
Luther, G. W. III (1991). Pyrite synthesis via polysulfide compounds. Geochimica et Cosmochimica Acta, 55, 2839–2849.
Martínez-Alonso, M., Mir, J., Caumette, P., Gaju, N., Guerrero, R., & Esteve, I. (2004). Distribution of phototrophic populations and primary production in a microbial mat from the Ebro Delta, Spain. International Microbiology, 7, 19–25.
Mayer, L. M., Schick, L. L., Allison, M. A., Ruttenberg, K. C., & Bentley, S. J. (2007). Marine vs. terrigeneous organic matter in Louisiana coastal sediments: The uses of bromine:Organic carbon ratios. Marine Chemistry, 107, 244–254.
Morse, J. W., & Luther, G. W. (1999). Chemical influences on metal-sulfide interactions in anoxic sediments. Geochimica et Cosmochimica Acta, 63, 3373–3378.
Morse, J. W., & Rickard, D. (2004). Chemical dynamics of sedimentary acid volatile sulfide. Environmental Science & Technology, 38(7), 131A–136A.
Nair, A., Juwarkar, A. A., & Singh, S. K. (2007). Production and characterization of siderophores and its application in arsenic removal from contaminated soil. Water, Air, and Soil Pollution, 180, 199–212.
Newman, D. K., Kennedy, E. K., Coates, J. D., Ahmann, D., Ellis, D. J., Lovley, D. R., & Morel, F. M. M. (1997). Dissimilatory arsenate and sulfate reduction in Desulfotomaculum auripigmentum sp. nov. Archives of Microbiology, 168, 380–388.
Oremland, R. S., Kulp, T. R., Blum, J. S., Hoeft, S. E., Baesman, S., Miller, L. G., & Stolz, J. F. (2005). A microbial arsenic cycle in a salt-saturated, extreme environment. Science, 308, 1305–1308.
Oremland, R. S., & Stolz, J. F. (2003). The ecology of arsenic. Science, 300, 939–944.
Oremland, R. S., & Stolz, J. F. (2005). Arsenic, microbes and contaminated aquifers. Trends in Microbiology, 13, 45–49.
Oren, A. (2010). Mats of filamentous and unicellular cyanobacteria in hypersaline environments. In J. Seckbach, & A. Oren (Eds.), Cellular origin, life in extreme habitats and astrobiology Vol. 14. Microbial Mats, (pp. 389–400). Berlin: Springer Verlag.
Oren, A. (2015). Cyanobacteria in hypersaline environments: Biodiversity and physiological properties. Biodiversity and Conservation, 24, 781–798.
Pace, A., Bourillot, R., Bouton, A., Vennin, E., Galaup, S., Bundeleva, I., … Visscher, P. T. (2016). Microbial and diagenetic steps leading to the mineralization of Great Salt Lake microbialites. Nature Scientific Reports, 6, 31495. doi:10.1038/srep
Pages, A., Welsh, D. T., Teasdale, P. R., Grice, K., Vacher, M., Bennett, W. W., & Visscher, P. T. (2014). Diel variations in solute distributions and biogeochemical cycling in a hypersaline microbial mat from Shark Bay, WA. Marine Chemistry, 167, 102–112.
Park-Boush, L. E., Myrbo, A. E., & Michelson, A. (2014). A qualitative and quantitative model for climate-driven lake formation on carbonate platforms based on examples from the Bahamian archipelago. Carbonates and Evaporites, 29, 409–418.
Passow, U., & Alldredge, A. L. (1995). A dye-binding assay for the spectrophotometric measurement of transparent exopolymer particles (TEP). Limnology and Oceanography, 40, 1326–1335.
Petrash, D. A., Lalonde, S. V., González-Arismendi, G., Gordon, R. A., Méndez, J. A., Gingras, M. K., & Konhauser, K. O. (2015). Can Mn–S redox cycling drive sedimentary dolomite formation? A hypothesis. Chemical Geology, 404, 27–40.
Pinckney, J. L., & Paerl, H. W. (1997). Anoxygenic photosynthesis and nitrogen fixation by a microbial mat community in a bahamian hypersaline lagoon. Applied and Environmental Microbiology, 63, 420–426.
Revsbech, N. P., & Jørgensen, B. B. (1986). Microelectrodes: Their use in microbial ecology. In K. C. Marshall (Ed.), Advances in microbial ecology, Vol. 9 (pp. 293–352). New York: Springer Science.
Rickard, D., & Morse, J. W. (2005). Acid volatile sulfide (AVS). Marine Chemistry, 97(3), 141–197.
Riding, R. (2000). Microbial carbonates: The geological record of calcified bacterial-algal mats and biofilms. Sedimentology, 47, 179–214.
Rividi, N., van Zuilen, M., Philippot, P., Ménez, B., Godard, G., & Poidatz, E. (2010). Calibration of carbonate composition using micro-Raman analysis: Application to planetary surface exploration. Astrobiology, 10, 293–309.
Schoonen, M. A. A. (2004). Mechanisms of sedimentary pyrite formation. Geological Society of America Special Papers, 379, 117–134.
Sforna, M. C., Philippot, P., Somogyi, A., Van Zuilen, M. A., Medjoubi, K., Schoepp-Cothenet, B., … Visscher, P. T. (2014). Evidence for arsenic metabolism and cycling by microorganisms 2.7 billion years ago. Nature Geoscience, 7, 811–815.
Shaw, T. J., Gieskes, J. M., & Jahnke, R. A. (1990). Early diagenesis in differing depositional environments: The response of transition metals in pore water. Geochimica et Cosmochimica Acta, 54, 1233–1246.
Stal, L. J., van Gemerden, H., & Krumbein, W. E. (1984). The simultaneous assay of chlorophyll and bacteriochlorophyll in natural microbial communities. Journal of Microbiological Methods, 2, 295–306.
Stolz, J. F., Basu, P., Santini, J. M., & Oremland, R. S. (2006). Arsenic and Selenium in microbial metabolism. Annual Review of Microbiology, 60, 107–130.
Stolz, J. F., Reid, R. P., Visscher, P. T., Decho, A. W., Norman, R. S., Aspen, R. J., … Prufert-Bebout, L. (2009). The microbial communities of the modern marine stromatolites at Highborne Cay, Bahamas. Journal of Atoll Research, 567, 1–29.
Tice, M. M., & Lowe, D. R. (2004). Photosynthetic microbial mats in the 3,416-Myr-old ocean. Nature, 431, 549–552.
Trüper, H. G., & Schlegel, H. G. (1964). Sulphur metabolism in Thiorhodaceae 1. Quantitative measurements on growing cells of Chromatium okenii. Antonie van Leeuwenhoek, 30, 225–238.
Van der Putten, E., Dehairs, F., Keppens, E., & Baeyens, W. (2000). High resolution distribution of trace elements in the calcite shell of modern Mytilus edulis : Environmental and biological controls. Geochimica et Cosmochimica Acta, 64, 997–1011.
Van Gemerden, H. (1993). Microbial mats: A joint venture. Marine Geology, 113, 3–25.
Van Hullebusch, E., Zandvoort, M. H., & Lens, P. N. L. (2003). Metal immobilisation by biofilms: Mechanisms and analytical tools. Reviews in Environmental Science and Bio/Technology, 2, 9–33.
Van Lis, R., Nitschke, W., Duval, S., & Schoepp-Cothenet, B. (2013). Arsenics as bioenergetic substrates. Biochemica et Biophysica Acta, 1827, 176–188.
Visscher, P. T., Beukema, J., & van Gemerden, H. (1991). In situ characterization of sediments: Measurements of oxygen and sulfide profiles with a novel combined needle electrode. Limnology and Oceanography, 36, 1476–1480.
Visscher, P. T., Prins, R. A., & van Gemerden, H. (1992). Rates of sulfate reduction and thiosulfate consumption in a marine microbial mat. FEMS Microbiology Ecology, 86, 283–294.
Visscher, P. T., Reid, R. P., & Bebout, B. M. (2000). Microscale observation of sulfate reduction: Evidence of microbial activity forming lithified micritic laminae in modern marine stromatolites. Geology, 28, 919–922.
Visscher, P. T., Reid, R. P., Bebout, B. M., Hoeft, S. E., Macintyre, I. G., & Thompson, J. A. Jr (1998). Formation of lithified micritic laminae marine stromatolites (Bahamas): The role of sulfur cycling. American Mineralogist, 83, 1482–1493.
Visscher, P. T., & Stolz, J. F. (2005). Microbial mats as bioreactors: Populations, processes, and products. PALAEO, 219, 87–100.
Visscher, P. T., van den Ende, F. P., Schaub, B. E. M., & van Gemerden, H. (1992). Competition between anoxygenic phototrophic bacteria and colorless sulfur bacteria in a microbial mat. FEMS Microbiology Ecology, 101, 51–58.
Visscher, P. T., & van Gemerden, H. (1993). Sulfur cycling in laminated marine ecosystems. In R. S. Oremland (Ed.), Biogeochemistry of global change: Radiatively active trace gases (pp. 672–693). New York: Chapman and Hall.
Webster-Brown, J. G., & Webster, K. S. (2007). Trace metals in cyanobacterial mats, phytoplankton and sediments of the Lake Vanda region, Antarctica. Antarctic Science, 19, 311–319.
Widerlund, A., Ingri, J. (1995). Early diagenesis of arsenic in sediments of the Kalix River estuary, northern Sweden. Chemical Geology, 125, 185–196.
Wieland, A., Pape, T., Möbius Klocj, J.-H., & Michaelis, W. (2008). Carbon isotope pools and isotopic trends in a hypersaline microbial mat. Geobiology, 6, 171–186.
Wieland, A., Zopfi, J., Benthien, M., & Kühl, M. (2005). Biogeochemistry of an iron-rich hypersaline microbial mat (Camargue, France). Microbial Ecology, 49, 34–49.
Winkel, L. H., Casentini, B., Bardelli, F., Voegelin, A., Nikolaidis, N. P., & Charlet, L. (2013). Speciation of arsenic in Greek travertines: Co-precipitation of arsenate with calcite. Geochimica et Cosmochimica Acta, 106, 99–110.
Zachara, J. M., Cowan, C. E., & Resch, C. T. (1991). Sorption of divalent metals on calcite. Geochimica et Cosmochimica Acta, 55, 1549–1562.
Zhabina, N. N., & Volkov, I. I. (1978). A method of determination of various sulfur compounds in sea sediments and rocks. In W. E. Krumbein (Ed.), Environmental Biogeochemistry and Geomicrobiology, Vol. 3 (pp. 735–746). Ann Arbor: Ann Arbor Science Publishers.
Ziegler, M., Jilbert, T., de Lange, G. J., Lourens, L. J., & Reichart, G. J. (2008). Bromine counts from XRF scanning as an estimate of the marine organic carbon content of sediment cores. Geochemistry, Geophysics, Geosystems, 9, Q05009. doi:10.1029/2007GC001932
Zwolsman, J. J. G., Berger, G. W., & Van Eck, G. T. M. (1993). Sediment accumulation rates, historical input, post depositional mobility and retention of major elements and trace metals in salt marsh sediments of the Scheldt estuary, SW Netherlands. Marine Chemistry, 44, 73–94.