3D electrical resistivity tomography; cross-line measurements; electrode configuration; karstic environments
Abstract :
[en] The acquisition of a full 3D survey on a large area of investigation is difficult, and from a practitioner’s point of view, very costly. In high-resolution 3D surveys, the number of electrodes increases rapidly and the total number of electrode combinations becomes very large. In this paper, we propose an innovative 3D acquisition procedure based on the roll-along technique. It makes use of 2D parallel lines with additional cross-line measurements. However, in order to increase the number of directions represented in the data, we propose to use cross-line measurements in several directions. Those cross-line measurements are based on dipole-dipole configurations as commonly used in cross-borehole surveys. We illustrate the method by investigating the subsurface geometry in a karstic environment for a future wind turbine project. We first test our methodology with a numerical benchmark using a synthetic model. Then, we validate it through a field case application to image the 3D geometry of karst features and the top of unaltered bedrock in limestone formations. We analyze the importance of cross-line measuring and analyze their capability for accurate subsurface imaging. The comparison with standard parallel 2D surveys clearly highlighted the added value of the cross-lines measurements to detect those structures. It provides crucial insight in subsurface geometry for the positioning of the future wind turbine foundation. The developed method can provide a useful tool in the design of 3D ERT survey to optimize the amount of information collected within a limited time frame.
Disciplines :
Geological, petroleum & mining engineering
Author, co-author :
Van Hoorde, Maurits; Dredging International NV - DEME Group
Hermans, Thomas ; Université de Liège > Département ArGEnCo > Géophysique appliquée
Dumont, Gaël ; Université de Liège > Département ArGEnCo > Géophysique appliquée
Nguyen, Frédéric ; Katholieke Universiteit Leuven - KUL > Department of Civil Engineering
Language :
English
Title :
3D electrical resistivity tomography of karstified formations using cross-line measurements
scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.
Bibliography
Alija, S., Torrijo, F.J., Quinta-Ferreira, M., Geological engineering problems associated with tunnel construction in karst rock masses: the case of Gavarres tunnel (Spain). Eng. Geol. 157 (2013), 103–111, 10.1016/j.enggeo.2013.02.010.
Argote-Espino, D., Tejero-Andrade, A., Cifuentes-Nava, G., Iriarte, L., Farías, S., Chávez, R.E., López, F., 3D electrical prospection in the archaeological site of El Pahñú, Hidalgo State, Central Mexico. J. Archaeol. Sci. 40 (2013), 1213–1223, 10.1016/j.jas.2012.08.034.
Bentley, L.R., Gharibi, M., Two- and three-dimensional electrical resistivity imaging at a heterogeneous remediation site. Geophysics 69 (2004), 674–680, 10.1190/1.1759453.
Berge, M.A., Drahor, M.G., Electrical resistivity tomography investigations of multilayered archaeological settlements: part I - modelling: ERT investigations of multilayered settlements: part I - modelling. Archaeol. Prospect. 18 (2011), 159–171, 10.1002/arp.414.
Brunner, I., Friedel, S., Jacobs, F., Danckwardt, E., Investigation of a Tertiary maar structure using three-dimensional resistivity imaging. Geophys. J. Int. 136 (1999), 771–780.
Capizzi, R., Martorana, R., Messina, P., Cosentino, P.L., Geophysical and geotechnical investigations to support the restoration project of the Roman “Villa del Casale”, Piazza Armerina, Sicily, Italy. Near Surf. Geophys. 10 (2012), 145–160, 10.3997/1873-0604.2011038.
Caterina, D., Beaujean, J., Robert, T., Nguyen, F., A comparison study of different image appraisal tools for electrical resistivity tomography. Near Surf. Geophys. 11 (2013), 639–657, 10.3997/1873-0604.2013022.
Chambers, J.E., Wilkinson, P.B., Kuras, O., Ford, J.R., Gunn, D.A., Meldrum, P.I., Pennington, C.V.L., Weller, A.L., Hobbs, P.R.N., Ogilvy, R.D., Three-dimensional geophysical anatomy of an active landslide in Lias Group mudrocks, Cleveland Basin, UK. Geomorphology 125 (2011), 472–484, 10.1016/j.geomorph.2010.09.017.
Chambers, J.E., Wilkinson, P.B., Penn, S., Meldrum, P.I., Kuras, O., Loke, M.H., Gunn, D.A., River terrace sand and gravel deposit reserve estimation using three-dimensional electrical resistivity tomography for bedrock surface detection. J. Appl. Geophys. 93 (2013), 25–32, 10.1016/j.jappgeo.2013.03.002.
Chambers, J.E., Wilkinson, P.B., Uhlemann, S., Sorensen, J.P.R., Roberts, C., Newell, A.J., Ward, W.O.C., Binley, A., Williams, P.J., Gooddy, D.C., Old, G., Bai, L., Derivation of lowland riparian wetland deposit architecture using geophysical image analysis and interface detection. Water Resour. Res. 50 (2014), 5886–5905, 10.1002/2014WR015643.
Chávez, R.E., Cifuentes-Nava, G., Hernández-Quintero, J.E., Vargas, D., Tejero, A., Special 3D electric resistivity tomography (ERT) array applied to detect buried fractures on urban areas: San Antonio Tecómitl, Milpa Alta, México. Geofís. Int. 53 (2014), 425–434.
Cho, I.-K., Yeom, J.-Y., Crossline resistivity tomography for the delineation of anomalous seepage pathways in an embankment dam. Geophysics 72 (2007), G31–G38, 10.1190/1.2435200.
Dahlin, T., Bernstone, C., Loke, M.H., A 3-D resistivity investigation of a contaminated site at Lernacken, Sweden. Geophysics 67 (2002), 1692–1700, 10.1190/1.1527070.
Dey, A., Morrison, H.F., Resistivity modeling for arbitrarily shaped two-dimensional structures. Geophys. Prospect. 27 (1979), 106–136.
Dubois, C., Quinif, Y., Baele, J.-M., Barriquand, L., Bini, A., Bruxelles, L., Dandurand, G., Havron, C., Kaufmann, O., Lans, B., Maire, R., Martin, J., Rodet, J., Rowberry, M.D., Tognini, P., Vergari, A., The process of ghost-rock karstification and its role in the formation of cave systems. Earth Sci. Rev. 131 (2014), 116–148, 10.1016/j.earscirev.2014.01.006.
Dubois, C., Deceuster, J., Kaufmann, O., Rowberry, M.D., A new method to quantify carbonate rock weathering. Math. Geosci. 47 (2015), 889–935, 10.1007/s11004-014-9581-7.
Epting, J., Huggenberger, P., Glur, L., Integrated investigations of karst phenomena in urban environments. Eng. Geol. 109 (2009), 273–289, 10.1016/j.enggeo.2009.08.013.
Fiandaca, G., Martorana, R., Messina, P., Cosentino, P.L., The MYG methodology to carry out 3D electrical resistivity tomography on media covered by vulnerable surfaces of artistic value. Il Nuovo Cimento B 125 (2010), 711–718.
Hermans, T., Nguyen, F., Caers, J., Uncertainty in training image-based inversion of hydraulic head data constrained to ERT data: workflow and case study. Water Resour. Res. 51 (2015), 5332–5352, 10.1002/2014WR016460.
Ismail, A., Anderson, N., 2-D and 3-D resistivity imaging of karst sites in Missouri, USA. Environ. Eng. Geosci. 18 (2012), 281–293.
Kaufmann, O., Deceuster, J., A 3D resistivity tomography study of a LNAPL plume near a gas station at Brugelette (Belgium). J. Environ. Eng. Geophys. 12 (2007), 207–219.
Kaufmann, O., Deceuster, J., Detection and mapping of ghost-rock features in the Tournaisis area through geophysical methods—an overview. Geol. Belg. 17 (2014), 17–26.
LaBrecque, D.J., Ramirez, A., Daily, W., Binley, A., Schima, S.A., ERT monitoring of environmental remediation processes. Meas. Sci. Technol. 7 (1996), 375–383.
Loke, M.H., Acworth, I., Dahlin, T., A comparison of smooth and blocky inversion methods in 2D electrical imaging surveys. Explor. Geophys. 34 (2003), 182–187, 10.1071/EG03182.
Marescot, L., Loke, M.H., Chapellier, D., Delaloye, R., Lambiel, C., Reynard, E., Assessing reliability of 2D resistivity imaging in mountain permafrost studies using the depth of investigation index method. Near Surf. Geophys. 1 (2003), 57–67.
Marion, J.-M., Barchy, L., Carte géologique de Wallonie, Chimay-Couvin 57/7-8. Carte Géologique de Wallonie, 1999.
Marion, J.-M., Barchy, L., Carte géologique de Wallonie, Chimay-Couvin 57/7-8. Notice Explicative Carte Géologique de Wallonie, 1999.
Mihevc, A., Stepisnik, U., Electrical resistivity imaging of cave Divaska Jama, Slovenia. J. Cave Karst Stud. 74 (2012), 235–242.
Miller, C.R., Routh, P.S., Resolution analysis of geophysical images: comparison between point spread function and region of data influence measures. Geophys. Prospect. 55 (2007), 835–852, 10.1111/j.1365-2478.2007.00640.x.
Negri, S., Leucci, G., Mazzone, F., High resolution 3D ERT to help GPR data interpretation for researching archaeological items in a geologically complex subsurface. J. Appl. Geophys. 65 (2008), 111–120, 10.1016/j.jappgeo.2008.06.004.
Nguyen, F., Garambois, S., Jongmans, D., Pirard, E., Loke, M., Image processing of 2D resistivity data for imaging faults. J. Appl. Geophys. 57 (2005), 260–277.
Nyquist, J.E., Roth, M.J.S., Improved 3D pole-dipole resistivity surveys using radial measurement pairs. Geophys. Res. Lett., 32, 2005, L21416, 10.1029/2005GL024153.
Oldenborger, G.A., Routh, P.S., Knoll, M.D., Model reliability for 3D electrical resistivity tomography: application of the volume of investigation index to a time-lapse monitoring experiment. Geophysics 72:4 (2007), F167–F175.
Oldenburg, D.W., Li, Y., Inversion of 3-D resistivity data using an approximate inverse mapping. Geophys. J. Int. 116 (1994), 527–537.
Oldenburg, D.W., Li, Y., Estimating depth of investigation in DC resistivity and IP surveys. Geophysics 64 (1999), 403–416.
Orfanos, C., Apostolopoulos, G., 2D–3D resistivity and microgravity measurements for the detection of an ancient tunnel in the Lavrion area, Greece. Near Surf. Geophys. 9 (2011), 449–457, 10.3997/1873-0604.2011024.
Papadopoulos, N.G., Yi, M.-J., Kim, J.-H., Tsourlos, P., Tsokas, G.N., Geophysical investigation of tumuli by means of surface 3D Electrical Resistivity Tomography. J. Appl. Geophys. 70 (2010), 192–205, 10.1016/j.jappgeo.2009.12.001.
Perrin, J., Cartannaz, C., Noury, G., Vanoudheusden, E., A multicriteria approach to karst subsidence hazard mapping supported by weights-of-evidence analysis. Eng. Geol. 197 (2015), 296–305, 10.1016/j.enggeo.2015.09.001.
Pueyo Anchuela, Ó., Casas Sainz, A.M., Pocoví Juan, A., Gil Garbí, H., Assessing karst hazards in urbanized areas. Case study and methodological considerations in the mantle karst from Zaragoza city (NE Spain). Eng. Geol. 184 (2015), 29–42, 10.1016/j.enggeo.2014.10.025.
Rucker, D.F., Levitt, M.T., Greenwood, W.J., Three-dimensional electrical resistivity model of a nuclear waste disposal site. J. Appl. Geophys. 69 (2009), 150–164.
Rucker, D.F., Schindler, A., Levitt, M.T., Glaser, D.R., Three-dimensional electrical resistivity imaging of a gold heap. Hydrometallurgy 98 (2009), 267–275, 10.1016/j.hydromet.2009.05.011.
Sabbe, A., Le risque karstique dans les constructions d'habitations - propositions de mitigation, in: Karst et Aménagements Du Territoire. 2005 (Presented at the Karst et Aménagements du territoire).
Samyn, K., Mathieu, F., Bitri, A., Nachbaur, A., Closset, L., Integrated geophysical approach in assessing karst presence and sinkhole susceptibility along flood-protection dykes of the Loire River, Orléans, France. Eng. Geol. 183 (2014), 170–184, 10.1016/j.enggeo.2014.10.013.
Sauret, E.S.G., Beaujean, J., Nguyen, F., Wildemeersch, S., Brouyere, S., Characterization of superficial deposits using electrical resistivity tomography (ERT) and horizontal-to-vertical spectral ratio (HVSR) geophysical methods: a case study. J. Appl. Geophys. 121 (2015), 140–148, 10.1016/j.jappgeo.2015.07.012.
Song, K.-I., Cho, G.-C., Chang, S.-B., Identification, remediation, and analysis of karst sinkholes in the longest railroad tunnel in South Korea. Eng. Geol. 135–136 (2012), 92–105, 10.1016/j.enggeo.2012.02.018.
Suski, B., Brocard, G., Authemayou, C., Muralles, B.C., Teyssier, C., Holliger, K., Localization and characterization of an active fault in an urbanized area in central Guatemala by means of geoelectrical imaging. Tectonophysics 480 (2010), 88–98, 10.1016/j.tecto.2009.09.028.
Tsourlos, P., Papadopoulos, N., Yi, M.-J., Kim, J.-H., Tsokas, G., Comparison of measuring strategies for the 3-D electrical resistivity imaging of tumuli. J. Appl. Geophys. 101 (2014), 77–85, 10.1016/j.jappgeo.2013.11.003.
Ustra, A.T., Elis, V.R., Mondelli, G., Zuquette, L.V., Giacheti, H.L., Case study: a 3D resistivity and induced polarization imaging from downstream a waste disposal site in Brazil. Environ. Earth Sci. 66 (2012), 763–772, 10.1007/s12665-011-1284-5.
Yeh, H.-F., Lin, H.-I., Wu, C.-S., Hsu, K.-C., Lee, J.-W., Lee, C.-H., Electrical resistivity tomography applied to groundwater aquifer at downstream of Chih-Ben Creek basin, Taiwan. Environ. Earth Sci. 73 (2015), 4681–4687, 10.1007/s12665-014-3752-1.
Zhou, W., Beck, B.F., Stephenson, J.B., Reliability of dipole-dipole electrical resistivity tomography for defining depth to bedrock in covered karst terranes. Environ. Geol. 39 (2000), 760–766.
Zhou, W., Beck, B., Adams, A., Effective electrode array in mapping karst hazards in electrical resistivity tomography. Environ. Geol. 42 (2002), 922–928, 10.1007/s00254-002-0594-z.
Similar publications
Sorry the service is unavailable at the moment. Please try again later.
This website uses cookies to improve user experience. Read more
Save & Close
Accept all
Decline all
Show detailsHide details
Cookie declaration
About cookies
Strictly necessary
Performance
Strictly necessary cookies allow core website functionality such as user login and account management. The website cannot be used properly without strictly necessary cookies.
This cookie is used by Cookie-Script.com service to remember visitor cookie consent preferences. It is necessary for Cookie-Script.com cookie banner to work properly.
Performance cookies are used to see how visitors use the website, eg. analytics cookies. Those cookies cannot be used to directly identify a certain visitor.
Used to store the attribution information, the referrer initially used to visit the website
Cookies are small text files that are placed on your computer by websites that you visit. Websites use cookies to help users navigate efficiently and perform certain functions. Cookies that are required for the website to operate properly are allowed to be set without your permission. All other cookies need to be approved before they can be set in the browser.
You can change your consent to cookie usage at any time on our Privacy Policy page.