Abstract :
[en] We successfully prepared NASICON-type Na3V2(PO4)2F3 (NVPF) and a Na3V2(PO4)2F3/carbon nanotubes (CNT) composite by spray-drying followed by heat treatment in argon for 2 hours at 600 °C. The addition of CNT in the spray-drying solution creates a CNT network within the NVPF particles. After grinding, the smaller NVPF particles remain linked by CNT. Thanks to this conducting network, the composite powder displays competitive electrochemical performance when cycled against lithium in hybrid-ion batteries (2–4.6 V vs. Li+/Li) with specific capacities of 125 mAh.g−1 at C/10, 103 mAh.g−1 at 1C and 91 mAh.g−1 at 4C, together with 97.5% capacity retention at 1C over 100 cycles with coulombic efficiency of 99.4%. These results demonstrate that sodium vanadium (III) fluorophosphate electrode material can be obtained in a time-efficient way using the easily up-scalable spray-drying method.
Funders :
F.R.S.-FNRS - Fonds de la Recherche Scientifique
BATWAL project [PE Plan Marshall 2.vert]
Beware Fellowship Academia [2015-1, RESIBAT no. 1510399]
FRIA - Fonds pour la Formation à la Recherche dans l'Industrie et dans l'Agriculture
Scopus citations®
without self-citations
45