Abstract :
[en] ORC power systems have been proven to be a mature technology for low quality waste heat recovery applications. ORC units stand out for their simple structure, reliability and cost- effectiveness. The non-constant nature of the energy source requires the ORC power unit to be flexible. Dynamic modelling can be adopted to evaluate and optimize the response time of a system in case of transient conditions, to develop and test control strategies, to support the tuning of the controller and to support maintenance. In this work the dynamic model of a 1 MWel commercial ORC unit is presented. The dynamic model is developed based on the ThermoCycle Modelica library. The different component model are validated in steady-state against 21 measurements points. The dynamic model of the whole power unit is then developed connecting the validated component models. Different modelling approaches of various complexity are implemented to model the heat exchangers of the power system. The performance of the developed heat exchanger (HX) models are tested by running different transient simulations. The results allow identifying benefits and limitations of the tested HX modelling approaches.
Event name :
ECOS 29th International conference on Efficiency, Cost, Optimization, Simulation and Environmental Impact of Energy systems
Scopus citations®
without self-citations
4