Bröck, K. et al. CKD prevalence varies across the European general population. J. Am. Soc. Nephrol. 27, 2135-2147 (2016).
Okparavero, A. et al. Prevalence and complications of chronic kidney disease in a representative elderly population in Iceland. Nephrol. Dial. Transplant. 31, 439-447 (2016).
De Nicola, L. et al. Prevalence and cardiovascular risk profile of chronic kidney disease in Italy: results of the 2008-2012 National Health Examination Survey. Nephrol. Dial. Transplant. 30, 806-814 (2015).
Stanifer, J. W. et al. The epidemiology of chronic kidney disease in sub-Saharan Africa: A systematic review and meta-Analysis. Lancet Glob. Health 2, e174-e181 (2014).
Mills, K. T. et al. A systematic analysis of worldwide population-based data on the global burden of chronic kidney disease in 2010. Kidney Int. 88, 950-957 (2015).
Bröck, K. et al. Methodology used in studies reporting chronic kidney disease prevalence: A systematic literature review. Nephrol. Dial. Transplant. 30, iv6-iv16 (2015).
Ebert, N. et al. Prevalence of reduced kidney function and albuminuria in older adults: The Berlin Initiative Study. Nephrol. Dial. Transplant. http://dx.doi.org/10.1093/ndt/gfw079 (2016).
Coresh, J. et al. Prevalence of chronic kidney disease in the United States. JAMA 298, 2038-2047 (2007).
National Kidney Foundation. K/DOQI clinical practice guidelines for chronic kidney disease: evaluation, classification, and stratification. Am. J. Kidney Dis. 39 (2 Suppl. 1), S1-S266 (2002).
Anders, H.-J., Jayne, D. R. W. & Rovin, B. H. Hurdles to the introduction of new therapies for immune-mediated kidney diseases. Nat. Rev. Nephrol. 12, 205-216 (2016).
Kidney Disease: Improving Global Outcomes (KDIGO) CKD Work Group. KDIGO 2012 Clinical Practice Guideline for the Evaluation and Management of Chronic Kidney Disease. Kidney Int. Suppl. 3, 1-150 (2013).
Zdrojewski, L. et al. Prevalence of chronic kidney disease in a representative sample of the Polish population: results of the NATPOL 2011 survey. Nephrol. Dial. Transplant. 31, 433-439 (2016).
De Nicola, L. & Zoccali, C. Chronic kidney disease prevalence in the general population: heterogeneity and concerns. Nephrol. Dial. Transplant. 31, 331-335 (2016).
Knight, E. L. et al. Factors influencing serum cystatin C levels other than renal function and the impact on renal function measurement. Kidney Int. 65, 1416-1421 (2004).
Melsom, T. et al. Estimated GFR is biased by non-Traditional cardiovascular risk factors. Am. J. Nephrol. 41, 7-15 (2015).
Schei, J. et al. Residual associations of inflammatory markers with eGFR after accounting for measured GFR in a community-based cohort without CKD. Clin. J. Am. Soc. Nephrol. 11, 280-286 (2016).
Smith, H. W. in The Kidney: Structure and Function in Health and Disease 231-238 (Oxford Univ. Press, 1951).
Denker, M. et al. Chronic Renal Insufficiency Cohort Study (CRIC): overview and summary of selected findings. Clin. J. Am. Soc. Nephrol. 10, 2073-2083 (2015).
Eriksen, B. O. et al. GFR normalized to total body water allows comparisons across genders and body sizes. J. Am. Soc. Nephrol. 22, 1517-1525 (2011).
Eriksen, B. O. et al. Cystatin C is not a better estimator of GFR than plasma creatinine in the general population. Kidney Int. 78, 1305-1311 (2010).
Schaeffner, E. S. et al. Two novel equations to estimate kidney function in persons aged 70 years or older. Ann. Intern. Med. 157, 471-481 (2012).
Inker, L. A. et al. Midlife blood pressure and late-life GFR and albuminuria: An elderly general population cohort. Am. J. Kidney Dis. 66, 240-248 (2015).
Melsom, T. et al. Prediabetes and risk of glomerular hyperfiltration and albuminuria in the general nondiabetic population: A prospective cohort study. Am. J. Kidney Dis. 67, 841-850 (2016).
Delanaye, P. & Cohen, E. P. Formula-based estimates of the GFR: equations variable and uncertain. Nephron Clin. Pr. 110, c48-c53 (2008).
Coresh, J., Eknoyan, G. & Levey, A. S. Estimating the prevalence of low glomerular filtration rate requires attention to the creatinine assay calibration. J. Am. Soc. Nephrol. 13, 2811-2812 (2002).
Cockcroft, D. W. & Gault, M. H. Prediction of creatinine clearance from serum creatinine. Nephron 16, 31-41 (1976).
Stevens, L. A. et al. Evaluation of the modification of diet in renal disease study equation in a large diverse population. J. Am. Soc. Nephrol. 18, 2749-2757 (2007).
Piéroni, L. et al. A multicentric evaluation of IDMS-Traceable creatinine enzymatic assays. Clin. Chim. Acta 412, 2070-2075 (2011).
Levey, A. S. et al. A new equation to estimate glomerular filtration rate. Ann. Intern. Med. 150, 604-612 (2009).
Pottel, H. et al. A new estimating glomerular filtration rate equation for the full age spectrum. Nephrol. Dial. Transplant. 31, 798-806 (2016).
Bjork, J. et al. Accuracy of GFR estimating equations combining standardized cystatin C and creatinine assays: A cross-sectional study in Sweden. Clin. Chem. Lab. Med. 53, 403-414 (2015).
Delanaye, P., Cavalier, E., Cristol, J.-P. & Delanghe, J. R. Calibration and precision of serum creatinine and plasma cystatin C measurement: impact on the estimation of glomerular filtration rate. J. Nephrol. 27, 467-475 (2014).
Kuster, N. et al. Enzymatic creatinine assays allow estimation of glomerular filtration rate in stages 1 and 2 chronic kidney disease using CKD-EPI equation. Clin. Chim. Acta 428, 89-95 (2013).
Delanaye, P., Cavalier, E., Maillard, N., Krzesinski, J.-M. & Mariat, C. Creatinine calibration in NHANES: is a revised MDRD study formula needed? Am. J. Kidney Dis. 51, 709 (2008).
Selvin, E. et al. Calibration of serum creatinine in the National Health and Nutrition Examination Surveys (NHANES) 1988-1994, 1999-2004. Am. J. Kidney Dis. 50, 918-926 (2007).
Boutten, A. et al. Enzymatic but not compensated Jaffe methods reach the desirable specifications of NKDEP at normal levels of creatinine. Results of the French multicentric evaluation. Clin. Chim. Acta 419, 132-135 (2013).
White, C. A. et al. The impact of interlaboratory differences in cystatin C assay measurement on glomerular filtration rate estimation. Clin. J. Am. Soc. Nephrol. 6, 2150-2156 (2011).
Delanaye, P. et al. Analytical study of three cystatin C assays and their impact on cystatin C-based GFR-prediction equations. Clin. Chim. Acta 398, 118-124 (2008).
González-Antuña, A. et al. Determination of Cystatin C in human serum by isotope dilution mass spectrometry using mass overlapping peptides. J. Proteomics 112, 141-155 (2015).
Blirup-Jensen, S., Grubb, A., Lindstrom, V., Schmidt, C. & Althaus, H. Standardization of Cystatin C: development of primary and secondary reference preparations. Scand. J. Clin. Lab. Invest. Suppl. 241, 67-70 (2008).
Ebert, N. et al. Cystatin C standardization decreases assay variation and improves assessment of glomerular filtration rate. Clin. Chim. Acta 456, 115-121 (2016).
Eckfeldt, J. H., Karger, A. B., Miller, W. G., Rynders, G. P. & Inker, L. A. Performance in measurement of serum Cystatin C by laboratories participating in the College of American Pathologists 2014 CYS Survey. Arch. Pathol. Lab. Med. 139, 888-893 (2015).
Delanaye, P. et al. Estimation of GFR by different creatinine-And cystatin-C-based equations in anorexia nervosa. Clin. Nephrol. 71, 482-491 (2009).
Stevens, L. A. et al. Factors other than glomerular filtration rate affect serum cystatin C levels. Kidney Int. 75, 652-660 (2009).
Naour, N. et al. Potential contribution of adipose tissue to elevated serum cystatin C in human obesity. Obesity (Silver Spring) 17, 2121-2126 (2009).
Fricker, M., Wiesli, P., Brandle, M., Schwegler, B. & Schmid, C. Impact of thyroid dysfunction on serum cystatin C. Kidney Int. 63, 1944-1947 (2003).
Larsson, A., Akerstedt, T., Hansson, L.-O. & Axelsson, J. Circadian variability of cystatin C, creatinine, and glomerular filtration rate (GFR) in healthy men during normal sleep and after an acute shift of sleep. Chronobiol. Int. 25, 1047-1061 (2008).
Levey, A. S. et al. A more accurate method to estimate glomerular filtration rate from serum creatinine: A new prediction equation. Ann. Intern. Med. 130, 461-470 (1999).
Bouquegneau, A. et al. Creatinine-based equations for the adjustment of drug dosage in an obese population. Br. J. Clin. Pharmacol. 81, 349-361 (2016).
Bouquegneau, A. et al. Modification of Diet in Renal Disease versus Chronic Kidney Disease Epidemiology Collaboration equation to estimate glomerular filtration rate in obese patients. Nephrol. Dial. Transplant. 28, iv122-iv130 (2013).
Lemoine, S. et al. Accuracy of GFR estimation in obese patients. Clin. J. Am. Soc. Nephrol. 9, 720-727 (2014).
Froissart, M., Rossert, J., Jacquot, C., Paillard, M. & Houillier, P. Predictive performance of the modification of diet in renal disease and Cockcroft-Gault equations for estimating renal function. J. Am. Soc. Nephrol. 16, 763-773 (2005).
White, S. L., Polkinghorne, K. R., Atkins, R. C. & Chadban, S. J. Comparison of the prevalence and mortality risk of CKD in Australia using the CKD Epidemiology Collaboration (CKD-EPI) and Modification of Diet in Renal Disease (MDRD) Study GFR estimating equations: The AusDiab (Australian Diabetes, Obesity and Lifestyle. Am. J. Kidney Dis. 55, 660-670 (2010).
Delanaye, P. et al. Creatinine-or cystatin C-based equations to estimate glomerular filtration in the general population: impact on the epidemiology of chronic kidney disease. BMC Nephrol. 14, 57 (2013).
Ponte, B. et al. Determinants and burden of chronic kidney disease in the population-based CoLaus study: A cross-sectional analysis. Nephrol. Dial. Transplant. 28, 2329-2339 (2013).
Fraser, S. D. et al. Exploration of chronic kidney disease prevalence estimates using new measures of kidney function in the health survey for England. PLoS ONE 10, e0118676 (2015).
Juutilainen, A. et al. Comparison of the MDRD Study and the CKD-EPI Study equations in evaluating trends of estimated kidney function at population level: findings from the National FINRISK Study. Nephrol. Dial. Transplant. 27, 3210-3217 (2012).
Rothenbacher, D. et al. Prevalence and determinants of chronic kidney disease in community-dwelling elderly by various estimating equations. BMC Public Health 12, 343 (2012).
Stengel, B. et al. Epidemiology and prognostic significance of chronic kidney disease in the elderly-The Three-City prospective cohort study. Nephrol. Dial. Transplant. 26, 3286-3295 (2011).
Van Pottelbergh, G. et al. The glomerular filtration rate estimated by new and old equations as a predictor of important outcomes in elderly patients. BMC Med. 12, 27 (2014).
Mandelli, S. et al. Mortality prediction in the oldest old with five different equations to estimate glomerular filtration rate: The Health and Anemia Population-based Study. PLoS ONE 10, e0136039 (2015).
Grams, M. E. et al. Trends in the prevalence of reduced GFR in the United States: A comparison of creatinine-And cystatin c-based estimates. Am. J. Kidney Dis. 62, 253-260 (2013).
Lujambio, I. et al. Estimation of glomerular filtration rate based on serum cystatin C versus creatinine in a Uruguayan population. Int. J. Nephrol. 2014, 837106 (2014).
Glaser, N., Deckert, A., Phiri, S., Rothenbacher, D. & Neuhann, F. Comparison of various equations for estimating GFR in Malawi: how to determine renal function in resource limited settings? PLoS ONE 10, e0130453 (2015).
Eriksen, B. O. & Ingebretsen, O. C. In chronic kidney disease staging the use of the chronicity criterion affects prognosis and the rate of progression. Kidney Int. 72, 1242-1248 (2007).
Benghanem Gharbi, M. et al. Chronic kidney disease, hypertension, diabetes, and obesity in the adult population of Morocco: how to avoid 'over'-And 'under'-diagnosis of CKD. Kidney Int. 89, 1363-1371 (2016).
Eriksen, B. O. & Ingebretsen, O. C. The progression of chronic kidney disease: A 10-year population-based study of the effects of gender and age. Kidney Int. 69, 375-382 (2006).
Delanaye, P. et al. Are the creatinine-based equations accurate to estimate glomerular filtration rate in African American populations? Clin. J. Am. Soc. Nephrol. 6, 906-912 (2011).
van Deventer, H. E., George, J. A., Paiker, J. E., Becker, P. J. & Katz, I. J. Estimating glomerular filtration rate in black South Africans by use of the modification of diet in renal disease and Cockcroft-Gault equations. Clin. Chem. 54, 1197-1202 (2008). 70.
Flamant, M. et al. Performance of GFR estimating equations in African Europeans: basis for a lower race-ethnicity factor than in African Americans. Am. J. Kidney Dis. 62, 182-184 (2013).
Anker, N. et al. Racial disparities in creatinine-based kidney function estimates among HIV-infected adults. Ethn. Dis. 26, 213-220 (2016).
Delanaye, P., Cavalier, E., Mariat, C., Krzesinski, J.-M. & Rule, A. D. Estimating glomerular filtration rate in Asian subjects: where do we stand? Kidney Int. 80, 439-440 (2011).
Teo, B. W. et al. The choice of estimating equations for glomerular filtration rate significantly affects the prevalence of chronic kidney disease in a multi-ethnic population during health screening. Nephrology (Carlton) 14, 588-596 (2009).
Inker, L. A. et al. Estimating glomerular filtration rate from serum creatinine and cystatin C. N. Engl. J. Med. 367, 20-29 (2012).
Pottel, H., Hoste, L., Delanaye, P., Cavalier, E. & Martens, F. Demystifying ethnic/sex differences in kidney function: is the difference in (estimating) glomerular filtration rate or in serum creatinine concentration? Clin. Chim. Acta 413, 1612-1617 (2012).
Inker, L. A. et al. GFR estimation using β-Trace protein and β2-microglobulin in CKD. Am. J. Kidney Dis. 67, 40-48 (2016).
Warnock, D. G. Estimated glomerular filtration rate: fit for what purpose? Nephron 134, 43-49 (2016).
Glassock, R. J. & Winearls, C. The global burden of chronic kidney disease: how valid are the estimates? Nephron Clin. Pract. 110, c39-c46 (2008).
Ene-Iordache, B. et al. Chronic kidney disease and cardiovascular risk in six regions of the world (ISN-KDDC): A cross-sectional study. Lancet Glob. Health 4, e307-e319 (2016).
Zhang, L. et al. Prevalence of chronic kidney disease in China: A cross-sectional survey. Lancet 379, 815-822 (2012).
Stanifer, J. W., Muiru, A., Jafar, T. H. & Patel, U. D. Chronic kidney disease in low-And middle-income countries. Nephrol. Dial. Transplant. 31, 868-874 (2016).
Glassock, R., Delanaye, P. & El Nahas, M. An age-calibrated classification of chronic kidney disease. JAMA 314, 559-560 (2015).
Delanaye, P., Glassock, R. J., Pottel, H. & Rule, A. D. An age-calibrated definition of chronic kidney disease: rationale and benefits. Clin. Biochem. Rev. 37, 17-26 (2016).
Levey, A. S., Inker, L. A. & Coresh, J. Chronic kidney disease in older people. JAMA 314, 557-558 (2015).
Pottel, H., Hoste, L. & Delanaye, P. Abnormal glomerular filtration rate in children, adolescents and young adults starts below 75 mL/min/1.73 m2. Pediatr. Nephrol. 30, 821-828 (2015).
Foley, R. N., Wang, C., Snyder, J. J. & Collins, A. J. Cystatin C levels in U.S. adults, 1988-1994 versus 1999-2002: NHANES. Clin. J. Am. Soc. Nephrol. 4, 965-972 (2009).
Murphy, D. et al. Trends in prevalence of chronic kidney disease in the United States. Ann. Intern. Med. 165, 473-481 (2016).
Saran, R. et al. US Renal Data System 2015 annual data report: epidemiology of kidney disease in the United States. Am. J. Kidney Dis. 67, A7-A8 (2016).
Centers for Disease Control and Prevention. Diabetes public health resource. CDC www.cdc.gov/diabetes/statistics/prevalence-national.htm (2015).
Global Burden of Disease Study 2013 Collaborators. Global, regional, and national incidence, prevalence, and years lived with disability for 301 acute and chronic diseases and injuries in 188 countries, 1990-2013: A systematic analysis for the Global Burden of Disease Study 2013. Lancet. 386, 743-800 (2015).
GBD 2013 Mortality and Causes of Death Collaborators. Global, regional, and national age-sex specific all-cause and cause-specific mortality for 240 causes of death, 1990-2013: A systematic analysis for the Global Burden of Disease Study 2013. Lancet 385, 117-171 (2014).
Tuot, D. S. et al. Variation in patients' awareness of CKD according to how they are asked. Clin. J. Am. Soc. Nephrol. 11, 1566-1573 (2016).
GBD 2015 Disease and Injury Incidence and Prevalence Collaborators. Global, regional, and national incidence, prevalence and years live with disability for 310 diseases and injuries; 1990-2015: A systematic analysis for the Global Burden of Disease Study 2015. Lancet. 388, 1545-1602 (2016).
Luyckx, V. A. et al. Effect of fetal and child health on kidney development and long-Term risk of hypertension and kidney disease. Lancet 382, 273-283 (2013).
Brenner, B. M. & Mackenzie, H. S. Nephron mass as a risk factor for progression of renal disease. Kidney Int. Suppl. 63, S124-S127 (1997).
Shannon, J. A. & Smith, H. W. The excretion of inulin, xylose, and urea by normal and phorizinized man. J. Clin. Invest. 14, 393-401 (1935).
Hendrix, J. P., Westfall, B. B. & Richards, A. N. Quantitative studies of the composition of glomerular urine. XIV. The glomerular excretion of insulin in frogs and necturi. J. Biol. Chem. 116, 735-747 (1937).
Delanaye, P. et al. Iohexol plasma clearance for measuring glomerular filtration rate in clinical practice and research: A review. Part 1: how to measure glomerular filtration rate with iohexol? Clin. Kidney J. 9, 682-699 (2016).
Soveri, I. et al. Measuring GFR: A systematic review. Am. J. Kidney Dis. 64, 411-424 (2014).
Delanaye, P. & Mariat, C. The applicability of eGFR equations to different populations. Nat. Rev. Nephrol. 9, 513-522 (2013).
Levey, A. S. et al. Using standardized serum creatinine values in the modification of diet in renal disease study equation for estimating glomerular filtration rate. Ann. Intern. Med. 145, 247-254 (2006).
Grubb, A. et al. Generation of a new cystatin C-based estimating equation for glomerular filtration rate by use of 7 assays standardized to the international calibrator. Clin. Chem. 60, 974-986 (2014).
Delanghe, J. R. & Speeckaert, M. M. Creatinine determination according to Jaffe-what does it stand for? NDT Plus 4, 83-86 (2011).
Perrone, R. D., Madias, N. E. & Levey, A. S. Serum creatinine as an index of renal function: new insights into old concepts. Clin. Chem. 38, 1933-1953 (1992).