[en] We introduce a generalization of Pascal triangle based on binomial coefficients of finite words. These coefficients count the number of times a finite word appears as a subsequence of another finite word. Similarly to the Sierpiński gasket that can be built as the limit set, for the Hausdorff distance, of a convergent sequence of normalized compact blocks extracted from Pascal triangle modulo 2, we describe and study the first properties of the subset of [0, 1] × [0, 1] associated with this extended Pascal triangle modulo a prime p.
Disciplines :
Mathematics
Author, co-author :
Stipulanti, Manon ; Université de Liège > Département de mathématique > Mathématiques discrètes
Language :
English
Title :
Generalized Pascal triangles for binomial coefficients of words: a short introduction
Publication date :
09 January 2017
Number of pages :
23
Event name :
Sage Days 82 : Women in Sage
Event organizer :
Viviane Pons, Jennifer Balakrishnan, Jessica Striker
Event place :
Paris, France
Event date :
du 9 janvier 2017 au 13 janvier 2017
Audience :
International
Funders :
FRIA - Fonds pour la Formation à la Recherche dans l'Industrie et dans l'Agriculture
Commentary :
Work in collaboration with Julien Leroy (ULg, j.leroy@ulg.ac.be) and Michel Rigo (ULg, m.rigo@ulg.ac.be). // Travail en collaboration avec Julien Leroy (ULg, j.leroy@ulg.ac.be) et Michel Rigo (ULg, m.rigo@ulg.ac.be).