Article (Scientific journals)
Counting the number of non-zero coefficients in rows of generalized Pascal triangles
Leroy, Julien; Rigo, Michel; Stipulanti, Manon
2017In Discrete Mathematics, 340, p. 862-881
Peer Reviewed verified by ORBi
 

Files


Full Text
postprint auteur.pdf
Author postprint (383.26 kB)
Download

All documents in ORBi are protected by a user license.

Send to



Details



Keywords :
Binomial coefficients; Pascal triangle; Subwords; Stern-Brocot tree; Farey tree; Trie of sub words
Abstract :
[en] This paper is about counting the number of distinct (scattered) subwords occurring in a given word. More precisely, we consider the generalization of the Pascal triangle to binomial coefficients of words and the sequence (S(n))n≥0 counting the number of positive entries on each row. By introducing a convenient tree structure, we provide a recurrence relation for (S(n))n≥0. This leads to a connection with the 2-regular Stern–Brocot sequence and the sequence of denominators occurring in the Farey tree. Then we extend our construction to the Zeckendorf numeration system based on the Fibonacci sequence. Again our tree structure permits us to obtain recurrence relations for and the F-regularity of the corresponding sequence.
Disciplines :
Mathematics
Author, co-author :
Leroy, Julien ;  Université de Liège > Département de mathématique > Mathématiques discrètes
Rigo, Michel  ;  Université de Liège > Département de mathématique > Mathématiques discrètes
Stipulanti, Manon  ;  Université de Liège > Département de mathématique > Mathématiques discrètes
Language :
English
Title :
Counting the number of non-zero coefficients in rows of generalized Pascal triangles
Publication date :
2017
Journal title :
Discrete Mathematics
ISSN :
0012-365X
eISSN :
1872-681X
Publisher :
Elsevier Science, Amsterdam, Netherlands
Volume :
340
Pages :
862-881
Peer reviewed :
Peer Reviewed verified by ORBi
Available on ORBi :
since 09 January 2017

Statistics


Number of views
344 (19 by ULiège)
Number of downloads
235 (5 by ULiège)

Scopus citations®
 
12
Scopus citations®
without self-citations
7
OpenCitations
 
8
OpenAlex citations
 
12

Bibliography


Similar publications



Contact ORBi