[en] Surfactants are molecules able to spontaneously self-assemble to form aggregates with well-defined properties, such as spherical micelles, planar bilayers, cylindrical micelles or vesicles. Micelles have notably several applications in many domains, such as drug delivery or membrane protein solubilization. In this context, the study of micelle formation in relation with the structural and physico-chemical properties of surfactants is of great interest to better control their use in the different application fields.
In this work, we use the MD approach developed by Yoshii et al. and extend it to surfactants with different structures. We aim to systematically investigate different micellar properties as a function of the aggregates size by a molecular dynamics approach, to get an insight into the micellar organization and to collect some relevant descriptors about micelle formation. For this, we perform short MD simulations of preformed micelles of various sizes and analyze three parameters for each micelle size, namely the eccentricity of the micelles, the hydrophobic/hydrophilic surface ratio and the hydrophobic tails hydration. If these parameters are known descriptors of micelles, they were not yet studied in this way by MD.
We show that eccentricity, used as “validator” parameter, exhibits minimal values when the aggregate size is close to the experimental aggregation number for surfactants that are known to form spherical micelles. This hence indicates that our methodology gives consistent results. The evolution of the two descriptors follows another scheme, with a sharp increase and decrease, respectively, followed by a leveling-off. The aggregate sizes at which this stabilization starts to occur are close to the respective aggregation number of each surfactant. In our approach, we validate the use of these descriptors to follow micelle formation by MD, from “simple” surfactants to more complex structures, like lipopeptides. Our calculations also suggest that some peculiar behavior, like that of TPC, can be highlighted by our approach.
In the context of peptidic surfactants, our methodology could further help to improve computer simulations combined to molecular thermodynamic models to predict micellar properties of those more complex amphiphilic molecules.
Disciplines :
Biochemistry, biophysics & molecular biology
Author, co-author :
Lebecque, Simon ✱; Université de Liège > Agronomie, Bio-ingénierie et Chimie (AgroBioChem) > Biophysique moléc. aux interfaces
Crowet, Jean-Marc ✱; Université de Liège > Agronomie, Bio-ingénierie et Chimie (AgroBioChem) > Biophysique moléc. aux interfaces
Nasir, Mehmet Nail ; Université de Liège > Agronomie, Bio-ingénierie et Chimie (AgroBioChem) > Chimie générale et organique
Deleu, Magali ; Université de Liège > Agronomie, Bio-ingénierie et Chimie (AgroBioChem) > Biophysique moléc. aux interfaces
Lins, Laurence ; Université de Liège > Agronomie, Bio-ingénierie et Chimie (AgroBioChem) > Biophysique moléc. aux interfaces
✱ These authors have contributed equally to this work.
Language :
English
Title :
Molecular dynamics study of micelle proeprties according to their size
Publication date :
2017
Journal title :
Journal of Molecular Graphics and Modelling
ISSN :
1093-3263
eISSN :
1873-4243
Publisher :
Elsevier Science
Volume :
72
Pages :
6-15
Peer reviewed :
Peer Reviewed verified by ORBi
Tags :
CÉCI : Consortium des Équipements de Calcul Intensif
Funders :
CÉCI - Consortium des Équipements de Calcul Intensif
[1] Lukyanov, A.N., Torchilin, V.P., Micelles from lipid derivatives of water-soluble polymers as delivery systems for poorly soluble drugs. Adv. Drug Deliv. Rev. 56 (2004), 1273–1289, 10.1016/j.addr.2003.12.004.
[2] Parker, W., Song, P.S., Protein structures in SDS micelle-protein complexes. Biophys. J. 61 (1992), 1435–1439, 10.1016/S0006-3495(92)81949-5.
[3] Zdziennicka, A., Szymczyk, K., Krawczyk, J., Jańczuk, B., Critical micelle concentration of some surfactants and thermodynamic parameters of their micellization. Fluid Phase Equilib. 322–323 (2012), 126–134, 10.1016/j.fluid.2012.03.018.
[4] Tummino, P.J., Gafni, A., Determination of the aggregation number of detergent micelles using steady-state fluorescence quenching. Biophys. J. 64 (1993), 1580–1587, 10.1016/S0006-3495(93)81528-5.
[5] Hayter, J.B., Penfold, J., Determination of micelle structure and charge by neutron small-angle scattering. Colloids Polym. Sci. 261 (1983), 1022–1030, 10.1007/BF01421709.
[6] Lipfert, L., Columbus, V.B., Lesley, S.A., Doniach, S., Size and shape of detergent micelles determined by small-angle X-ray scattering. J. Phys. Chem. B 111 (2007), 12427–12438, 10.1021/jp073016l.
[7] Schillh, K., Brown, W., Johnsen, R.M., Micellar sphere-to-Rod transition in an aqueous triblock copolymer system. Macromolecules 27 (1994), 4825–4832.
[8] Zheng, Y., Davis, H.T., Mixed micelles of nonionic surfactants and uncharged block copolymers in aqueous solutions: microstructure seen by cryo-TEM. Langmuir 16 (2000), 6453–6459, 10.1021/la000230r.
[9] Tanford, C., The Hydrophobic Effect: Formation of Micelles and Biological Membranes. 1980, Wiley.
[10] Nagarajan, R., Ruckenstein, E., Critical micelle concentration: a transition point for micellar size distribution. J. Colloid Interface Sci. 60 (1977), 221–231, 10.1016/0021-9797(77)90282-X.
[11] Puvvada, S., Blankschtein, D., Molecular‐thermodynamic approach to predict micellization, phase behavior and phase separation of micellar solutions I. Application to nonionic surfactants. J. Chem. Phys. 92 (1990), 3710–3724, 10.1063/1.457829.
[12] Nagarajan, R., Theory of surfactant self −Assembly: a predictive molecular thermodynamic approach. Langmuir 7 (1991), 2934–2969, 10.1021/la00060a012.
[13] Goldsipe, A., Blankschtein, D., Modeling counterion binding in ionic-Nonionic and ionic-Zwitterionic binary surfactant mixtures. Langmuir 21 (2005), 9850–9865, 10.1021/la050699s.
[14] Stephenson, B.C., Beers, K., Blankschtein, D., Complementary use of simulations and molecular-thermodynamic theory to model micellization. Langmuir 22 (2006), 1500–1513, 10.1021/la052042c.
[15] Stephenson, B.C., Goldsipe, A., Beers, K.J., Blankschtein, D., Quantifying the hydrophobic effect. 2. A computer simulation-molecular-thermodynamic model for the micellization of nonionic surfactants in aqueous solution. J. Phys. Chem. B 111 (2007), 1045–1062, 10.1021/jp065697a.
[16] Bruce, C.D., Berkowitz, M.L., Perera, L., Forbes, M.D.E., Molecular dynamics simulation of sodium dodecyl sulfate micelle in water: micellar structural characteristics and counterion distribution. J. Phys. Chem. B. 106 (2002), 3788–3793, 10.1021/jp013616z.
[17] Rakitin, A.R., Pack, G.R., Molecular dynamics simulations of ionic interactions with dodecyl sulfate micelles. J. Phys. Chem. B 108 (2004), 2712–2716, 10.1021/jp030914i.
[18] Bruce, C.D., Senapati, S., Berkowitz, M.L., Perera, L., Forbes, M.D.E., Molecular dynamics simulations of sodium dodecyl sulfate micelle in water: the behavior of water. J. Phys. Chem. B 106 (2002), 10902–10907, 10.1021/jp025872x.
[19] Chong, T.T., Hashim, R., Bryce, R.A., Molecular dynamics simulation of monoalkyl glycoside micelles in aqueous solution: influence of carbohydrate headgroup stereochemistry. J. Phys. Chem. B 110 (2006), 4978–4984, 10.1021/jp056851g.
[20] Konidala, P., He, L., Niemeyer, B., Molecular dynamics characterization of n-octyl-beta-D-glucopyranoside micelle structure in aqueous solution. J. Mol. Graph. Model. 25 (2006), 77–86, 10.1016/j.jmgm.2005.11.008.
[21] Shang, B.Z., Wang, Z., Larson, R.G., Molecular dynamics simulation of interactions between a sodium dodecyl sulfate micelle and a poly(ethylene oxide) polymer. J. Phys. Chem. B 112 (2008), 2888–2900, 10.1021/jp0773841.
[22] Shang, B.Z., Wang, Z., Larson, R.G., Effect of headgroup size, charge, and solvent structure on polymer-micelle interactions, studied by molecular dynamics simulations. J. Phys. Chem. B 113 (2009), 15170–15180, 10.1021/jp9057737.
[23] Jalili, S., Akhavan, M., A coarse-grained molecular dynamics simulation of a sodium dodecyl sulfate micelle in aqueous solution. Colloids Surf. A Physicochem. Eng. Aspects 352 (2009), 99–102, 10.1016/j.colsurfa.2009.10.007.
[24] Wang, Q., Hong, G., Johnson, G.R., Pachter, R., Cheung, M.S., Biophysical properties of membrane-active peptides based on micelle modeling: a case study of cell-penetrating and antimicrobial peptides. J. Phys. Chem. B 114 (2010), 13726–13735, 10.1021/jp1069362.
[25] Lorenz, C.D., Hsieh, C.-M., Dreiss, C.A., Lawrence, M.J., Molecular dynamics simulations of the interfacial and structural properties of dimethyldodecylamine-N-oxide micelles. Langmuir 27 (2011), 546–553, 10.1021/la1031416.
[26] She, A.-Q., Gang, H.-Z., Mu, B.-Z., Temperature influence on the structure and interfacial properties of surfactin micelle: a molecular dynamics simulation study. J. Phys. Chem. B 116 (2012), 12735–12743, 10.1021/jp302413c.
[27] Abel, S., Dupradeau, F.-Y., Raman, E.P., MacKerell, A.D.J., Marchi, M., Molecular simulations of Dodecyl-B-maltoside micelles in water: influence of the headgroup conformation and force field parameters. J. Phys. Chem. B 115 (2012), 487–499, 10.1021/jp109545v.Molecular.
[28] Marrink, S.J., Tieleman, D.P., Mark, a. E., Molecular dynamics simulation of the kinetics of spontaneous micelle formation. J. Phys. Chem. B 104 (2000), 12165–12173, 10.1021/jp001898h.
[29] Gao, J., Ge, W., Hu, G., Li, J., From homogeneous dispersion to micelles-a molecular dynamics simulation on the compromise of the hydrophilic and hydrophobic effects of sodium dodecyl sulfate in aqueous solution. Langmuir 21 (2005), 5223–5229, 10.1021/la047121n.
[30] Sammalkorpi, M., Karttunen, M., Haataja, M., Structural properties of ionic detergent aggregates: a large-scale molecular dynamics study of sodium dodecyl sulfate. J. Phys. Chem. B 111 (2007), 11722–11733, 10.1021/jp072587a.
[31] Sammalkorpi, M., Sanders, S., Panagiotopoulos, A.Z., Karttunen, M., Haataja, M., Simulations of micellization of sodium hexyl sulfate. J. Phys. Chem. B 115 (2011), 1403–1410, 10.1021/jp109882r.
[32] Levine, B.G., LeBard, D.N., DeVane, R., Shinoda, W., Kohlmeyer, A., Klein, M.L., Micellization studied by GPU-accelerated coarse-grained molecular dynamics. J. Chem. Theory Comput. 7 (2011), 4135–4145, 10.1021/ct2005193.
[33] Sanders, S.A., Sammalkorpi, M., Panagiotopoulos, A.Z., Atomistic simulations of micellization of sodium hexyl, heptyl, octyl, and nonyl sulfates. J. Phys. Chem. B 116 (2012), 2430–2437, 10.1021/jp209207p.
[34] Yoshii, N., Okazaki, S., A molecular dynamics study of structural stability of spherical SDS micelle as a function of its size. Chem. Phys. Lett. 425 (2006), 58–61, 10.1016/j.cplett.2006.05.004.
[35] Ranganathan, R., Tran, L., Bales, B.L., Surfactant- and salt-induced growth of normal sodium alkyl sulfate micelles well above their critical micelle concentrations. J. Phys. Chem. B 104 (2000), 2260–2264, 10.1021/jp993917x.
[36] Huisman, H.F., Light scattering of solutions of ionic detergents. Proc. K. Ned. Akad. Wet. Ser. B Phys. Sci., 67, 1964.
[37] Aniansson, E.A.G., Wall, S.N., Almgren, M., Hoffmann, H., Theory of the kinetics of micellar equilibria and quantitative interpretation of chemical relaxation studies of micellar solutions of ionic surfactants. J. Phys. Chem. 80 (1976), 905–922.
[38] Almgren, M., Gimel, J.C., Wang, K., Karlsson, G., Edwards, K., Brown, W., Mortensen, K., SDS, Micelles at high ionic strength. a light scattering, neutron scattering, fluorescence quenching, and CryoTEM investigation. J. Colloids Interface Sci. 202 (1998), 222–231, 10.1006/jcis.1998.5503.
[39] Bales, B.L., Messina, L., Vidal, A., Peric, M., Nascimento, O.R., Precision relative aggregation number determinations of SDS micelles using a spin probe. a model of micelle surface hydration. J. Phys. Chem. B 102 (1998), 10347–10358, 10.1021/jp983364a.
[40] Oliver, R.C., Lipfert, J., Fox, D.A., Lo, R.H., Doniach, S., Columbus, L., Dependence of micelle size and shape on detergent alkyl chain length and head group. PLoS One, 8, 2013, e62488, 10.1371/journal.pone.0062488.
[41] Göbl, C., Dulle, M., Hohlweg, W., Grossauer, J., Falsone, S.F., Glatter, O., Zangger, K., Influence of phosphocholine alkyl chain length on peptide-micelle interactions and micellar size and shape. J. Phys. Chem. B 114 (2010), 4717–4724, 10.1021/jp9114089.
[42] Shen, H.-H., Thomas, R.K., Chen, C.-Y., Darton, R.C., Baker, S.C., Penfold, J., Aggregation of the naturally occurring lipopeptide, surfactin, at interfaces and in solution: an unusual type of surfactant?. Langmuir 25 (2009), 4211–4218 http://www.ncbi.nlm.nih.gov/pubmed/19714837.
[43] Yoshii, N., Iwahashi, K., Okazaki, S., A molecular dynamics study of free energy of micelle formation for sodium dodecyl sulfate in water and its size distribution. J. Chem. Phys., 124, 2006, 184901, 10.1063/1.2179074.
[44] Oostenbrink, C., Villa, A., Mark, A.E., van Gunsteren, W.F., A biomolecular force field based on the free enthalpy of hydration and solvation: the GROMOS force-field parameter sets 53A5 and 53A6. J. Comput. Chem. 25 (2004), 1656–1676, 10.1002/jcc.20090.
[45] The PyMOL Molecular Graphics System, (n.d.).
[46] Hyperchem Hypercube (TM) (2003).
[47] Malde, A.K., Zuo, L., Breeze, M., Stroet, M., Poger, D., Nair, P.C., Oostenbrink, C., Mark, A.E., An automated force field topology builder (ATB) and repository: version 1.0. J. Chem. Theory Comput. 7 (2011), 4026–4037, 10.1021/ct200196m.
[48] Chen, R., Mark, A.E., The effect of membrane curvature on the conformation of antimicrobial peptides: implications for binding and the mechanism of action. Eur. Biophys. J. 40 (2011), 545–553, 10.1007/s00249-011-0677-4.
[49] Tieleman, D.P., Van Der Spoel, D., Berendsen, H.J.C., Molecular dynamics simulations of dodecylphosphocholine micelles at three different aggregate sizes: micellar structure and chain relaxation. J. Phys. Chem. 23 (2000), 6380–6388.
[50] Martinez, L., Andrade, R., Birgin, E.G., Martinez, J.M., Packmol: a package for building initial configurations for molecular dynamics simulations. Wiley Intersci., 2009, 10.1002/jcc.
[52] Hermans, J.A.N., Van, W.F., A consistent empirical potential lor water-Protein interactions. Biopolymers 23 (1984), 1513–1518 10.1002/bip.360230807/abstract (Accessed 17 July 2014).
[53] Parrinello, M., Rahman, A., Polymorphic transitions in single crystals: a new molecular dynamics method. J. Appl. Phys., 52, 1981, 7182, 10.1063/1.328693.
[54] Hess, B., Bekker, H., Berendsen, H.J.C., Fraaije, J.G.E.M., LINCS: A linear constraint solver for molecular simulations. J. Comput. Chem. 18 (1997), 1463–1472, 10.1002/(SICI)1096-987X(199709)18:12<1463:AID-JCC4>3.0.CO;2-H.
[55] Humphrey, A., VMD: visual molecular dynamics. J. Mol. Graph. 7855 (1996), 33–38.
[56] Marchi, M., Abel, S., Modeling the self-aggregation of small AOT reverse micelles from first-principles. J. Phys. Chem. Lett. 6 (2015), 170–174, 10.1021/jz5023619.
[57] Eisenhaber, F., Lijnzaad, P., Argos, P., Sander, C., Scharf, M., The double cubic lattice method: efficient approaches to numerical integration of surface area and volume and to dot surface contouring of molecular assemblies. J. Comput. Chem. 16 (1995), 273–284.
[58] Ruiz, C.C., Politecnica, E.U., A photophysical study of the urea effect on micellar properties of sodium dodecylsulfate aqueous solutions. Colloid Polym. Sci. 1040 (1995), 1033–1040.
[59] Missel, P.J., Mazer, N.A., Benedek, G.B., Carey, M.C., Influence of chain length on the sphere-to-rod transition in alkyl sulfate micelles. J. Phys. Chem. 87 (1983), 1264–1277.
[60] Shen, H.-H., Lin, T.-W., Thomas, R.K., Taylor, D.J.F., Penfold, J., Surfactin structures at interfaces and in solution: the effect of pH and cations. J. Phys. Chem. B 115 (2011), 4427–4435, 10.1021/jp109360h.
[61] Tang, X., Koenig, P.H., Larson, R.G., Molecular dynamics simulations of sodium dodecyl sulfate micelles in water—the effect of the force field. J. Phys. Chem. B 118 (2014), 3864–3880.
[62] Poger, D., Van Gunsteren, W.F., Mark, A.E., A new force field for simulating phosphatidylcholine bilayers. J. Comput. Chem. 31 (2010), 1117–1125, 10.1002/jcc.21396.
[63] Abel, S., Dupradeau, F.Y., Marchi, M., Molecular dynamics simulations of a characteristic DPC micelle in water. J. Chem. Theory Comput. 8 (2012), 4610–4623, 10.1021/ct3003207.