[5] Innocenzi, P., Malfatti, L., Soler-Illia, G.J.A.A., Hierarchical mesoporous films: from self-assembly to porosity with different length scales. Chem. Mater. 23 (2011), 2501–2509.
[6] Yang, P., Zhao, D., Margolese, D.I., Chmelka, B.F., Stucky, G.D., Generalized syntheses of large-pore mesoporous metal oxides with semicrystalline frameworks. Nature 396 (1998), 152–155.
[7] Boettcher, S.W., Fan, J., Tsung, C.-K., Shi, Q., Stucky, G.D., Harnessing the sol–gel process for the assembly of non-silicate mesostructured oxide materials. Acc. Chem. Res. 40 (2007), 784–792.
[8] Yu, C., Tian, B., Zhao, D., Recent advances in the synthesis of non-siliceous mesoporous materials. Curr. Opin. Solid State Mater. Sci. 7 (2003), 191–197.
[10] Wan, Y., Shi, Y., Zhao, D., Designed Synthesis of Mesoporous Solids via Nonionic-surfactant-templating Approach. 2007, Chemical Communications, Cambridge, United Kingdom, 897–926.
[11] Sanchez, C., Boissière, C., Grosso, D., Laberty, C., Nicole, L., Design, synthesis, and properties of inorganic and hybrid thin films having periodically organized nanoporosity†. Chem. Mater. 20 (2008), 682–737.
[12] Soler-Illia, G.J.A.A., Innocenzi, P., Mesoporous hybrid thin films: the physics and chemistry beneath. Chem. A Eur. J. 12 (2006), 4478–4494.
[13] Krins, N., Bass, J.D., Grosso, D., Henrist, C., Delaigle, R., Gaigneaux, E.M., Cloots, R., Vertruyen, B., Sanchez, C., NbVO5 mesoporous thin films by evaporation induced micelles packing: pore size dependence of the mechanical stability upon thermal treatment and Li insertion/extraction. Chem. Mater. 23 (2011), 4124–4131.
[14] Gillaspie, D.T., Tenent, R.C., Dillon, A.C., Metal-oxide films for electrochromic applications: present technology and future directions. J. Mater. Chem. 20 (2010), 9585–9592.
[15] Baetens, R., Jelle, B.P., Gustavsen, A., Properties, requirements and possibilities of smart windows for dynamic daylight and solar energy control in buildings: a state-of-the-art review. Sol. Energy Mater. Sol. Cells 94 (2010), 87–105.
[16] Li, C.-P., Engtrakul, C., Tenent, R.C., Wolden, C.A., Scalable synthesis of improved nanocrystalline, mesoporous tungsten oxide films with exceptional electrochromic performance. Sol. Energy Mater. Sol. Cells 132 (2015), 6–14.
[17] Qi, Z.-M., Zhou, H.-S., Watanabe, T., Honma, I., Synthesis, characterization and optical gas-sensing application of block copolymer templated mesostructured peroxopolytungstic acid films. J. Mater. Chem. 14 (2004), 3540–3547.
[18] Zhang, Y., Yuan, J., Le, J., Song, L., Hu, X., Structural and electrochromic properties of tungsten oxide prepared by surfactant-assisted process. Sol. Energy Mater. Sol. Cells 93 (2009), 1338–1344.
[19] Sallard, S., Brezesinski, T., Smarsly, B.M., Electrochromic stability of WO3 thin films with nanometer-scale periodicity and varying degrees of crystallinity. J. Phys. Chem. C 111 (2007), 7200–7206.
[20] Teoh, L.G., Hon, Y.M., Shieh, J., Lai, W.H., Hon, M.H., Sensitivity properties of a novel NO2 gas sensor based on mesoporous WO3 thin film. Sensors Actuators B Chem. 96 (2003), 219–225.
[21] Wang, W., Pang, Y., Hodgson, S.N.B., XRD studies of thermally stable mesoporous tungsten oxide synthesised by a templated sol–gel process from tungstic acid precursor. Microporous Mesoporous Mater. 121 (2009), 121–128.
[22] Wang, W., Pang, Y., Hodgson, S.N.B., Preparation, characterisation and electrochromic property of mesostructured tungsten oxide films via a surfactant templated sol–gel process from tungstic acid. J. Sol Gel Sci. Technol. 54 (2010), 19–28.
[23] Wang, W., Pang, Y., Hodgson, S.N.B., Design and fabrication of bimodal meso-mesoporous WO3 thin films and their electrochromic properties. J. Mater. Chem., 20, 2010, 8591.
[24] Chatzikyriakou, D., Krins, N., Gilbert, B., Colson, P., Dewalque, J., Denayer, J., Cloots, R., Henrist, C., Mesoporous amorphous tungsten oxide electrochromic films: a Raman analysis of their good switching behavior. Electrochim. Acta 137 (2014), 75–82.
[25] Li, J., Zhao, Q.-L., Zhang, G.-Y., Chen, J.-Z., Zhong, L., Li, L., Huang, J., Ma, Z., Synthesis of monoclinic WO3 nanosphere hydrogen gasochromic film via a sol–gel approach using PS-b-PAA diblock copolymer as template. Solid State Sci. 12 (2010), 1393–1398.
[26] Ozkan, E., Lee, S.-H., Liu, P., Tracy, C.E., Tepehan, F.Z., Pitts, J.R., Deb, S.K., Electrochromic and optical properties of mesoporous tungsten oxide films. Solid State Ion. 149 (2002), 139–146.
[27] Ozkan Zayim, E., Mesoporous sol–gel WO3 thin films via poly(styrene-co-allyl-alcohol) copolymer templates. Solid State Ion. 165 (2003), 65–72.
[29] Kim, J., Ong, G.K., Wang, Y., LeBlanc, G., Williams, T.E., Mattox, T.M., Helms, B.A., Milliron, D.J., Nanocomposite architecture for rapid, spectrally-selective electrochromic modulation of solar transmittance. Nano Lett. 15 (2015), 5574–5579.
[30] Deepa, M., Srivastava, A.K., Agnihotry, S.A., Influence of annealing on electrochromic performance of template assisted, electrochemically grown, nanostructured assembly of tungsten oxide. Acta Mater. 54 (2006), 4583–4595.
[31] Deepa, M., Kar, M., Singh, D.P., Srivastava, A.K., Ahmad, S., Influence of polyethylene glycol template on microstructure and electrochromic properties of tungsten oxide. Sol. Energy Mater. Sol. Cells 92 (2008), 170–178.
[32] Razzaghi, F., Debiemme-Chouvy, C., Pillier, F., Perrot, H., Sel, O., Ion intercalation dynamics of electrosynthesized mesoporous WO3 thin films studied by multi-scale coupled electrogravimetric methods. Phys. Chem. Chem. Phys. 17 (2015), 14773–14787.
[33] Zheng, H., Sadek, A.Z., Latham, K., Kalantar-Zadeh, K., Nanoporous WO3 from anodized RF sputtered tungsten thin films. Electrochem. Commun. 11 (2009), 768–771.
[34] Li, C.-P., Lin, F., Richards, R.M., Engtrakul, C., Dillon, A.C., Tenent, R.C., Wolden, C.A., Ultrasonic spray deposition of high performance WO3 films using template-assisted sol–gel chemistry. Electrochem. Commun. 25 (2012), 62–65.
[35] Li, C.-P., Lin, F., Richards, R.M., Engtrakul, C., Tenent, R.C., Wolden, C.A., The influence of sol–gel processing on the electrochromic properties of mesoporous WO3 films produced by ultrasonic spray deposition. Sol. Energy Mater. Sol. Cells 121 (2014), 163–170.
[36] Bertus, L.M., Faure, C., Danine, A., Labrugere, C., Campet, G., Rougier, A., Duta, A., Synthesis and characterization of WO3 thin films by surfactant assisted spray pyrolysis for electrochromic applications. Mater. Chem. Phys. 140 (2013), 49–59.
[37] Denayer, J., Aubry, P., Bister, G., Spronck, G., Colson, P., Vertruyen, B., Lardot, V., Cambier, F., Henrist, C., Cloots, R., Improved coloration contrast and electrochromic efficiency of tungsten oxide films thanks to a surfactant-assisted ultrasonic spray pyrolysis process. Sol. Energy Mater. Sol. Cells 130 (2014), 623–628.
[39] Perednis, D., Wilhelm, O., Pratsinis, S.E., Gauckler, L.J., Morphology and deposition of thin yttria-stabilized zirconia films using spray pyrolysis. Thin Solid Films 474 (2005), 84–95.
[40] Nakaruk, A., Sorrell, C.C., Conceptual model for spray pyrolysis mechanism: fabrication and annealing of titania thin films. J. Coat. Technol. Res. 7 (2010), 665–676.
[41] Sonotek Corporation, Investor Presentation, February 2013.
[42] Wang, W.-N., Purwanto, A., Lenggoro, I.W., Okuyama, K., Chang, H., Jang, H.D., Investigation on the correlations between droplet and particle size distribution in ultrasonic spray pyrolysis. Ind. Eng. Chem. Res. 47 (2008), 1650–1659.
[43] Guild, C., Biswas, S., Meng, Y., Jafari, T., Gaffney, A.M., Suib, S.L., Perspectives of spray pyrolysis for facile synthesis of catalysts and thin films: an introduction and summary of recent directions. Catal. Today 238 (2014), 87–94.
[44] Perednis, D., Gauckler, L.J., Solid oxide fuel cells with electrolytes prepared via spray pyrolysis. Solid State Ion. 166 (2004), 229–239.
[45] Beckel, D., Dubach, A., Studart, A.R., Gauckler, L.J., Spray pyrolysis of La0.6Sr0.4Co0.2Fe0.8O3-δ thin film cathodes. J. Electroceram. 16 (2006), 221–228.
[46] Muecke, U.P., Luechinger, N., Schlagenhauf, L., Gauckler, L.J., Initial stages of deposition and film formation during spray pyrolysis — nickel oxide, cerium gadolinium oxide and mixtures thereof. Thin Solid Films 517 (2009), 1522–1529.
[47] Henrist, C., Toussaint, C., de Vroede, J., Chatzikyriakou, D., Dewalque, J., Colson, P., Maho, A., Cloots, R., Surfactant-assisted ultrasonic spray pyrolysis of hematite mesoporous thin films. Microporous Mesoporous Mater. 221 (2016), 182–186.
[49] Deepa, M., Joshi, A.G., Srivastava, A.K., Shivaprasad, S.M., Agnihotry, S.A., Electrochromic nanostructured tungsten oxide films by sol-gel: structure and intercalation properties. J. Electrochem. Soc. 153 (2006), C365–C376.
[50] Sharma, N., Deepa, M., Varshney, P., Agnihotry, S.A., FTIR and absorption edge studies on tungsten oxide based precursor materials synthesized by sol–gel technique. J. Non Crystalline Solids 306 (2002), 129–137.
[51] Pecquenard, B., Lecacheux, H., Castro-Garcia, S., Livage, J., Electrochromic properties of peroxopolytungstic acid thin films. J. Sol Gel Sci. Technol. 13 (1998), 923–927.
[52] Faughnan, B.W., Crandall, R.S., Electrochromic displays based on WO3. Pankove, J.I., (eds.) Display Devices, 1980, Springer Berlin Heidelberg, 181–211.
[54] Neagu, R., Perednis, D., Princivalle, A., Djurado, E., Initial stages in zirconia coatings using ESD. Chem. Mater. 17 (2005), 902–910.
[55] Morales, J., Sánchez, L., Martín, F., Ramos-Barrado, J.R., Sánchez, M., Use of low-temperature nanostructured CuO thin films deposited by spray-pyrolysis in lithium cells. Thin Solid Films 474 (2005), 133–140.
[56] Bertus, L.M., Duta, A., Synthesis of WO3 thin films by surfactant mediated spray pyrolysis. Ceram. Int. 38 (2012), 2873–2882.