Acary, V. (2008). "Numerical methods for nonsmooth dynamical systems: Applications in mechanics and electronics". Lecture notes in applied and computational mechanics, 1st Ed., Vol. 35, Springer, New York.
Acary, V. (2010). "An excursion into nonsmooth dynamics: From mechanics, to electronics, through control". (Oct. 2010).
Acary, V. (2014). "Energy conservation and dissipation properties of time integration methods for the nonsmooth elastodynamics with contact". Z. Angew. Math. Mech. 96(5), 585-603.
Andrews, K. T., Shillor, M., and Wright, S. (1996). "On the dynamic vibrations of an elastic beam in frictional contact with a rigid obstacle". J. Elast., 42(1), 1-30.
Baraff, D. (1994). Fast contact force computation for nonpenetrating rigid bodies, ACM, New York, 23-34.
Belytschko, T., Liu, W. K., and Moran, B. (2000). Nonlinear finite elements for continua and structures, 1 Ed., Wiley, New York.
Bishop, S. R., Thompson, M. G., and Foale, S. (1996). "Prediction of period-1 impacts in a driven beam". Proc. R. Soc. A, 452(1954), 2579-2592.
Brogliato, B. (1996). "Nonsmooth impact mechanics: Models, dynamics, and control". Lecture notes in control and information sciences, Vol. 220, Springer, New York.
Bruls, O., Acary, V., and Cardona, A. (2014). "Simultaneous enforcement of constraints at position and velocity levels in the nonsmooth generalized-alpha method". Comput. Methods Appl. Mech. Eng., 281, 131-161.
Cardona, A., and Geradin, M. (1988). "A beam finite element non-linear theory with finite rotations". Int. J. Numer. Methods Eng., 26(11), 2403-2438.
Challamel, N., Kocsis, A., and Wang, C. (2015). "Discrete and non-local elastica". Int. J. Non-Linear Mech., 77, 128-140.
Chen, Q. Z., Acary, V., Virlez, G., and Bruls, O. (2012). "A Newmark-type integrator for flexible systems considering nonsmooth unilateral constraints". Proc., 2nd Joint Int. Conf. on Multibody System Dynamics, Peter Eberhard, Stuttgart, Germany.
Chen, Q.-Z., Acary, V., Virlez, G., and Bruls, O. (2013). "A nonsmooth generalized alpha scheme for flexible multibody systems with unilateral constraints". Int. J. Numer. Methods Eng., 96(8), 487-511.
Depouhon, A., Detournay, E., and Denoel, V. (2014). "Accuracy of one-step integration schemes for damped/forced linear structural dynamics: Accuracy of integration schemes including forcing terms and damping". Int. J. Numer. Methods Eng., 99(5), 333-353.
Dumont, Y. (2002). "Vibrations of a beam between stops: Numerical simulations and comparison of several numerical schemes". 60(1), 45-83.
Dumont, Y. (2003). "Some remarks on a vibro-impact scheme". Numer. Algorithms, 33(1-4), 227-240.
Dumont, Y., and Paoli, L. (2015). "Dynamic contact of a beam against rigid obstacles: Convergence of a velocity-based approximation and numerical results". Nonlinear Anal.: Real World Appl., 22, 520-536.
Glocker, C. (2001). Set-valued force laws, Springer, Berlin.
Goyal, S., Perkins, N. C., and Lee, C. L. (2008). "Non-linear dynamic intertwining of rods with self-contact". Int. J. Non-Linear Mech., 43(1), 65-73.
Graff, K. (1975). Wave motion in elastic solids, Dover, Mineola, NY.
Han, S. M., Benaroya, H., and Wei, T. (1999). "Dynamics of transversely vibrating beams using four engineering theories". J. Sound Vibr., 225(5), 935-988.
Hencky, H. (1920). "Uber die angenaeherte loesung von stabilitaetsproblemen im raum mittels der elastischen gelenkkette". Der Eisenbau, 11, 437-452 (in German).
Ibrahim, R. A. (2009). "Vibro-impact dynamics". Lecture notes in applied and computational mechanics, Vol. 43, Springer, Berlin.
Jean, M. (1999). "The non-smooth contact dynamics method". Comput. Methods Appl. Mech. Eng., 177(3-4), 235-257.
Johansson, L. (1997). "Beam motion with unilateral contact constraints and wear of contact sites". J. Pressure Vessel Technol., 119(1), 105-110.
Klapper, I. (1996). "Biological applications of the dynamics of twisted elastic rods". J. Comput. Phys., 125(2), 325-337.
Leine, R. I. (2008). "Stability and convergence of mechanical systems with unilateral constraints". Lecture notes in applied and computational mechanics, Vol. 36, Springer, Berlin.
Leine, R. I., and Nijmeijer, H. (2004). "Dynamics and bifurcations of non-smooth mechanical systems". Lecture notes in applied and computational mechanics, Vol. 18, Springer, Berlin.
Liakou, A., Denoel, V., and Detournay, E. (2016). "HeMo: A MATLAB program to simulated the fast in-plane dynamics of a beam with unilateral constraints". Univ. of Minnesota, Minneapolis.
Love, A. E. H. (2013). A treatise on the mathematical theory of elasticity, Cambridge University Press, Cambridge, U.K.
Melcher, J., Champneys, A. R., and Wagg, D. J. (2013). "The impacting cantilever: Modal non-convergence and the importance of stiffness matching". Philos. Trans. R. Soc. London A, 371(1993),.
Moreau, J. J., and Panagiotopoulos, P. D., eds. (1988). Nonsmooth mechanics and applications, Springer, New York.
Paoli, L. (2001). "Time discretization of vibro-impact". R. Soc. Philos. Trans. Math. Eng. Sci., 359(1789), 2405-2428.
Pozzolini, C., and Salaun, M. (2011). "Some energy conservative schemes for vibro-impacts of a beam on rigid obstacles". ESAIM: Math. Modell. Numer. Anal., 45(6), 1163-1192.
Rao, S. S. (2007). Vibration of continuous systems, Wiley, Hoboken, NJ.
Salvadori, M. (1951). "Numerical computation of buckling loads by finite differences". Trans. ASCE, 116(1), 590-636.
Simo, J. C. (1985). "A finite strain beam formulation. The three-dimensional dynamic problem. Part I". Comput. Methods Appl. Mech. Eng., 49(1), 55-70.
Simo, J. C., and Vu-Quoc, L. (1986). "A three-dimensional finite-strain rod model. Part II: Computational aspects". Comput. Methods Appl. Mech. Eng., 58(1), 79-116.
Spillmann, J., and Teschner, M. (2007). "CoRdE: Cosserat rod elements for the dynamic simulation of one-dimensional elastic objects". Proc., 2007 ACM SIGGRAPH/Eurographics Symp. on Computer Animation, SCA '07, Eurographics Association, Aire-la-Ville, Switzerland, 63-72.
Studer, C. (2009). "Numerics of unilateral contacts and friction". Lecture notes in applied and computational mechanics, Vol. 47, Springer, Berlin.
Vyasarayani, C. P. (2009). "Transient dynamics of continuous systems with impact and friction, with applications to musical instruments". Ph. D. thesis, Univ. of Waterloo, Waterloo, ON, Canada.
Vyasarayani, C. P., McPhee, J., and Birkett, S. (2009). "Modeling impacts between a continuous system and a rigid obstacle using coefficient of restitution". J. Appl. Mech., 77(2), 021008-021008.
Vyasarayani, C. P., Sandhu, S. S., and McPhee, J. (2012). "Nonsmooth modeling of vibro-impacting euler-bernoulli beam". Adv. Acoust. Vibr., 2012, 1-9.
Wagg, D. (2004). "A note on using the collocation method for modelling the dynamics of a flexible continuous beam subject to impacts". J. Sound Vibr., 276(3-5), 1128-1134.
Wagg, D., and Bishop, S. (2002). "Application of non-smooth modelling techniques to the dynamics of a flexible impacting beam". J. Sound Vibr., 256(5), 803-820.
Wang, C. M., Zhang, H., Gao, R. P., Duan, W. H., and Challamel, N. (2015). "Hencky bar-chain model for buckling and vibration of beams with elastic end restraints". Int. J. Struct. Stab. Dyn., 15(7),.