[en] Carbon dioxide (CO2), methane (CH4) and nitrous oxide (N2O) can be indirectly transferred to the atmosphere through groundwater discharge into surface water bodies such as rivers. However, these emissions are poorly evaluated and highly uncertain. The aim of this work is identify the hydrogeological contexts (alluvial, sandstone, chalk and limestone aquifers) and in situ conditions which are most conducive to the generation and occurrence of GHGs in groundwater at a regional scale. To this end, CO2, CH4 and N2O concentrations as well as major and minor elements were monitored (n=37 samples) in two field campaigns (09/2014 and 03/2015) in 15 groundwater bodies of the Walloon Region (Belgium). This preliminary work, which was presented in the 42st IAH conference (Rome, Italy), shown that GHG concentrations range from 5,160 to 47,544 ppm from the partial pressure of CO2 and from 0 to 1,064 nmol/L and 1 to 5,637 nmol/L for CH4 and N2O respectively. Overall, groundwater was supersaturated in GHGs with respect to atmospheric equilibrium, suggesting that groundwater contribute to the atmospheric GHGs budget.
A third sampling campaign is carried out in 2016 including around 60 new groundwater samples. The combination of the results of the three campaigns allows: (1) reducing the uncertainties related to indirect emissions of GHG through groundwater-surface water interaction and (2) contributing to a better understanding of the occurrence of GHGs in aquifers. New results will be presented and discussed in detail in the presentation.
Research Center/Unit :
Univesité de Liège, Hydrogeology & Environmental Geology, Aquapole, ArGEnCo Dpt, Engineering Faculty Univesité de Liège, Chemical Oceanography Unit FOCUS - Freshwater and OCeanic science Unit of reSearch - ULiège