[en] The present study focuses on the use of lignin, which is the second most abundant constituent
of the biomass, as sustainable flame retardant additive for polylactide (PLA).
Indeed, thanks to its aromatic structure, lignin could be advantageously used, in polymeric
matrices, as a char promotor agent that can allow some reduction of the combustion rate.
An original and simple approach, based on a two-step phosphorus/nitrogen chemical modification,
is proposed to enhance the flame retardant effect of lignin in PLA. This approach
has been applied on two different lignins, i.e. kraft and organosolv lignins. The effect of the
plant origin, extraction mode of lignin as well as it chemical modification on both its
structure and properties was investigated by using several characterization techniques.
Fire properties and thermal behavior of PLA composites containing 20 wt% of both
untreated and treated lignins were characterized by using cone calorimeter, UL-94 and
thermogravimetric analysis (TGA). Results showed that the incorporation of untreated
lignins led to a flame retardant action in PLA thanks to the formation of char but also to
a significant loss of the thermal stability of PLA and to an important decrease of its time
to ignition. In contrast, both phosphorus/nitrogen chemically treated lignins were found
to limit PLA thermal degradation during melt processing as well as during TG experiments
and also to significantly improve fire retardant properties allowing to reach V0 classification
at UL-94. In this paper we also deeply investigated the nature of the gases evolved during
thermal decomposition of treated and untreated lignins by using TGA-Mass
spectrometer and cone calorimeter – FTIR couplings
Disciplines :
Chemistry
Author, co-author :
Costes, Lucie; Laboratory of Polymeric & Composite Materials, Materia Nova Research Center – University of Mons UMONS, Place du Parc 23, B-7000 Mons, Belgium > Service de Génie des Procédés Chimiques, Faculté Polytechnique – University of Mons UMONS, Place du Parc 23, B-7000 Mons, Belgium
Laoutid, Fouad; Laboratory of Polymeric & Composite Materials, Materia Nova Research Center – University of Mons UMONS, Place du Parc 23, B-7000 Mons, Belgium
Aguedo, Mario ; Université de Liège > Agronomie, Bio-ingénierie et Chimie (AgroBioChem) > Chimie biologique industrielle
Richel, Aurore ; Université de Liège > Agronomie, Bio-ingénierie et Chimie (AgroBioChem) > Chimie biologique industrielle
Brohez, Sylvain; Service de Génie des Procédés Chimiques, Faculté Polytechnique – University of Mons UMONS, Place du Parc 23, B-7000 Mons, Belgium
Delvosalle, Christian; Service de Génie des Procédés Chimiques, Faculté Polytechnique – University of Mons UMONS, Place du Parc 23, B-7000 Mons, Belgium
Dubois, Philippe; Laboratory of Polymeric & Composite Materials, Materia Nova Research Center – University of Mons UMONS, Place du Parc 23, B-7000 Mons, Belgium
Language :
English
Title :
Phosphorus and nitrogen derivatization as efficient route for improvement of lignin flame retardant action in PLA
[1] Rabetafika, H.N., Paquot, M., Dubois, P., Les polymères issus du végétal : matériaux à propriétés spécifiques pour des applications ciblées en industrie plastique. Biotechnol. Agron. Soc. Environ. 10 (2006), 185–196.
[2] Kuczynski, J., Boday, D.J., Bio-based materials for high-end electronics applications. Int. J. Sustain. Dev. World Ecol. 19 (2012), 557–563, 10.1080/13504509.2012.721404.
[3] Wertz, J.T., Mauldin, T.C., Boday, D.J., Polylactic acid with improved heat deflection temperatures and self-healing properties for durable goods applications. ACS Appl. Mater. Interf. 6 (2014), 18511–18516, 10.1021/am5058713.
[4] Laoutid, F., Bonnaud, L., Alexandre, M., Lopez-Cuesta, J.M., Dubois, P., New prospects in flame retardant polymer materials: from fundamentals to nanocomposites. Mater. Sci. Eng. 63 (2009), 100–125, 10.1016/j.mser.2008.09.002.
[5] Morgan, A.B., Gilman, J.W., An overview of flame retardancy of polymeric materials: application, technology, and future directions. Fire Mater. 37 (2013), 259–279, 10.1002/fam.
[6] Harley, K.G., Marks, A.R., Chevrier, J., Bradman, A., Sjödin, A., Eskenazi, B., PBDE concentrations in women's serum and fecundability. Environ. Health Perspect. 118 (2010), 699–704, 10.1289/ehp.0901450.
[7] Chevrier, J., Harley, K.G., Bradman, A., Gharbi, M., Sjödin, A., Eskenazi, B., Polybrominated diphenyl ether (PBDE) flame retardants and thyroid hormone during pregnancy. Environ. Health Perspect. 118 (2010), 1444–1449, 10.1289/ehp.1001905.
[8] Levchik, S.V., Weil, E.D., A review of recent progress in phosphorus-based flame retardants. J. Fire Sci. 24 (2006), 345–364, 10.1177/0734904106068426.
[9] Bourbigot, S., Fontaine, G., Flame retardancy of polylactide: an overview. Polym. Chem. 1 (2010), 1413–1422, 10.1039/c0py00106f.
[10] Halpern, Y., Mott, D.M., Niswander, R.H., Fire retardancy of thermoplastic materials by intumescence. Ind. Eng. Chem. Prod. Res. Dev. 23 (1984), 233–238.
[11] Bourbigot, S., Duquesne, S., Fontaine, G., Bellayer, S., Turf, T., Samyn, F., Characterization and reaction to fire of polymer nanocomposites with and without conventional flame retardants. Mol. Cryst. Liq. Cryst., 486, 2008, 10.1080/15421400801921983 325/[1367]–339/[1381].
[12] Fontaine, G., Bourbigot, S., Intumescent polylactide: a nonflammable material. J. Appl. Polym. Sci. 113 (2009), 3860–3865, 10.1002/app.
[13] Zhan, J., Song, L., Nie, S., Hu, Y., Combustion properties and thermal degradation behavior of polylactide with an effective intumescent flame retardant. Polym. Degrad. Stab. 94 (2009), 291–296, 10.1016/j.polymdegradstab.2008.12.015.
[15] Reti, C., Casetta, M., Duquesne, S., Bourbigot, S., Delobel, R., Flammability properties of intumescent PLA including starch and lignin. Polym. Adv. Technol. 19 (2008), 628–635, 10.1002/pat.
[16] Feng, J.X., Su, S.P., Zhu, J., An intumescent flame retardant system using beta-cyclodextrin as a carbon source in polylactic acid (PLA). Polym. Adv. Technol. 22 (2011), 1115–1122, 10.1002/pat.1954.
[17] De Chirico, A., Armanini, M., Chini, P., Cioccolo, G., Provasoli, F., Audisio, G., Flame retardants for polypropylene based on lignin. Polym. Degrad. Stab. 79 (2003), 139–145.
[18] Lewis, N.G., Yamamoto, E., Lignin: occurrence, biogenesis and biodegradation. Annu. Rev. Plant Physiol. Plant Mol. Biol. 41 (1990), 455–496, 10.1146/annurev. pp. 41.060190.002323.
[19] Glasser, W.G., Classification of lignin according to chemical and molecular structure. ACS Symp. Ser. Am. Chem. Soc. Chapter 9 (2000), 216–238, 10.1021/bk-2000-0742.ch009.
[20] Shen, D.K., Gu, S., Bridgwater, A.V., The thermal performance of the polysaccharides extracted from hardwood: cellulose and hemicellulose. Carbohydr. Polym. 82 (2010), 39–45, 10.1016/j.carbpol.2010.04.018.
[21] Zhang, Y., Xiao, R., Tai, X., Huang, Q., Hu, H., Zhang, R., Xiao, X., Tai, Q., Huang, H., Hu, Y., Modification of lignin and its application as char agent in intumescent flame-retardant poly(lactic acid). Polym. Eng. Sci. 52 (2012), 2620–2626, 10.1002/pen.
[22] Zhang, R., Xiao, X., Tai, Q., Huang, H., Yang, J., Hu, Y., Preparation of lignin–silica hybrids and its application in intumescent flame-retardant poly(lactic acid) system. High Perform. Polym. 24 (2012), 738–746, 10.1177/0954008312451476.
[23] Zhang, R., Xiao, X., Tai, Q., Huang, H., Yang, J., Hu, Y., The effect of different organic modified montmorillonites (OMMTs) on the thermal properties and flammability of PLA/MCAPP/lignin systems. J. Appl. Polym. Sci. 127 (2013), 4967–4973, 10.1002/app.38095.
[24] Xing, W., Yuan, H., Zhang, P., Yang, H., Song, L., Hu, Y., Functionalized lignin for halogen-free flame retardant rigid polyurethane foam: preparation, thermal stability, fire performance and mechanical properties. J. Polym. Res. 20 (2013), 1–12, 10.1007/s10965-013-0234-1.
[25] Zhu, H., Peng, Z., Chen, Y., Li, G., Wang, L., Tang, Y., Pang, R., Khan, Z.U.H., Wan, P., Preparation and characterization of flame retardant polyurethane foams containing phosphorus–nitrogen-functionalized lignin. RSC Adv. 4 (2014), 55271–55279, 10.1039/C4RA08429B.
[26] Yu, Y., Fu, S., Song, P., Luo, X., Jin, Y., Lu, F., Wu, Q., Ye, J., Functionalized lignin by grafting phosphorus-nitrogen improves the thermal stability and flame retardancy of polypropylene. Polym. Degrad. Stab. 97 (2012), 541–546, 10.1016/j.polymdegradstab.2012.01.020.
[27] Ferry, L., Dorez, G., Taguet, A., Otazaghine, B., Lopez-Cuesta, J.M., Chemical modification of lignin by phosphorus molecules to improve the fire behavior of polybutylene succinate. Polym. Degrad. Stab. 113 (2015), 135–143, 10.1016/j.polymdegradstab.2014.12.015.
[29] Fourneau, C., Étude de Feux de Substances Chimiques en Conditions Sous-Ventilées à l'Aide d'un Cône Calorimètre. 2013, Université de Mons.
[30] Fox, S.C., McDonald, A.G., Chemical and thermal characterization of three industrial lignins and their corresponding lignin esters. BioResources 5 (2010), 990–1009.
[31] Chakar, F.S., Ragauskas, A.J., Review of current and future softwood kraft lignin process chemistry. Ind. Crops Prod. 20 (2004), 131–141, 10.1016/j.indcrop.2004.04.016.
[32] Nada, A.M.A., Kassem, N.F., Mohamed, S.H., Characterization and properties of ion exchangers produced from lignin precipitated after peroxyacid pulping. Bioresources 3 (2008), 538–548.
[33] Meister, J.J., Modification of lignin. J. Macromol. Sci. Part C - Polym. Rev. 42 (2002), 235–289.
[34] Watkins, D., Nuruddin, M., Hosur, M., Tcherbi-Narteh, A., Jeelani, S., Extraction and characterization of lignin from different biomass resources. J. Mater. Res. Technol. 4 (2015), 26–32, 10.1016/j.jmrt.2014.10.009.
[35] Brebu, M., Vasile, C., Thermal degradation of lignin—a review. Cellul. Chem. Technol. 44 (2010), 353–363 .
[36] Brebu, M., Tamminen, T., Spiridon, I., Thermal degradation of various lignins by TG-MS/FTIR and Py-GC-MS. J. Anal. Appl. Pyrol. 104 (2013), 531–539, 10.1016/j.jaap.2013.05.016.
[37] Li, J., Li, B., Zhang, X., Su, R., The study of flame retardants on thermal degradation and charring process of manchurian ash lignin in the condensed phase. Polym. Degrad. Stab. 72 (2001), 493–498, 10.1016/S0141-3910(01)00049-0.