Idelsohn SR, Oñate E, Del Pin F, Calvo N. Fluid–structure interaction using the particle finite element method. Computer Methods in Applied Mechanics and Engineering 2006; 195(17-18):2100–2123.
Oñate E, Idelsohn SR, Celigueta MA, Rossi R. Advances in the particle finite element method for the analysis of fluid–multibody interaction and bed erosion in free surface flows. Computer Methods in Applied Mechanics and Engineering 2008; 197:1777–1800.
Ryzhakov P, Rossi R, Viña A, Oñate E. Modelling and simulation of the sea-landing of aerial vehicles using the particle finite element method. Ocean Engineering 2013; 66:92–100.
Huerta A, Liu WK. Viscous flow with large free surface motion. Computer Methods in Applied Mechanics and Engineering 1988; 69:277–324.
Engelman MS, Sani RL, Gresho PM. The implementation of normal and/or tangential boundary conditions in finite element codes for incompressible fluid flow. International Journal for Numerical Methods in Fluids 1982; 2:225–238.
Garon A, Camarero R. Imposition of normal and/or tangential boundary conditions by an augmented Lagrangian technique. Computers & Structures 1992; 44:405–408.
Robertson I, Sherwin SJ, Graham JMR. Comparison of wall boundary conditions for numerical viscous free surface flow simulation. Journal of Fluids and Structures 2004; 19:525–542.
Franci A. Unified Lagrangian formulation for fluid and solid mechanics, fluid–structure interaction and coupled thermal problems using the PFEM. Ph.D. Thesis, Universitat Politècnica de Catalunya, 2015.
Franci A, Oñate E, Carbonell JM. Unified Lagrangian formulation for solid and fluid mechanics and FSI problems. Computer Methods in Applied Mechanics and Engineering 2016; 298:520–547.
Koshizuka S, Oka Y. Moving-particle semi-implicit method for fragmentation of incompressible fluid. Nuclear Science and Engineering 1996; 123:421–434.
Souto-Iglesias A, Botía-Vera E, MartÃtn A, Prez-Arribas F. A set of canonical problems in sloshing. Part 0: experimental setup and data processing. Ocean Engineering 2011; 38:1823–1830.
Idelsohn SR, Oñate E. To mesh or not to mesh. That is the question.Computer Methods in Applied Mechanics and Engineering 2006; 195:4681–4696.
Idelsohn SR, Oñate E, Del Pin F. The particle finite element method: a powerful tool to solve incompressible flows with free-surfaces and breaking waves. International Journal for Numerical Methods in Engineering 2004; 61:964–989.
Oñate E, Idelsohn SR, Del Pin F, Aubry R. The particle finite element method. An overview. International Journal of Computational Methods 2004; 1(2):267–307.
Zhang X, Krabbenhoft K, Pedroso DM, Lyamin AV, Sheng D, Vicente da Silva M, Wang D. Particle finite element analysis of large deformation and granular flow problems. Computers and Geotechnics 2013; 54:133–142.
Franci A, Cremonesi M. On the effect of standard PFEM remeshing on volume conservation in free-surface fluid flow problems. Computational Particle Mechanics 2016:1–13.
Cremonesi M, Frangi A, Perego U. A Lagrangian finite element approach for the analysis of fluid–structure interaction problems. International Journal for Numerical Methods in Engineering 2010; 84(5):610–630.
Tezduyar TE, Mittal S, Ray SE, Shih R. Incompressible flow computations with stabilized bilinear and linear equal-order-interpolation velocity-pressure elements. Computer Methods in Applied Mechanics and Engineering 1992; 95:221–242.
Chan DYC, Horn RG. The drainage of thin liquid films between solid surfaces.Journal of Chemical Physics 1985; 83(10):5311–5324.
Georges JM, Millot S, Loubet JL, Tonck A. Drainage of thin liquid films between relatively smooth surfaces.Journal of Chemical Physics 1993; 98(9):7345–7360.
Schlichting H, Gersten K. Boundary-Layer Theory. Springer: Springer-Verlag Berlin Heidelberg, 2000.
Oñate E, Celigueta MA, Idelsohn SR. Modeling bed erosion in free surface flows by the particle finite element method. Acta Geotechnica 2006; 1:237–252.
Kamran K, Rossi R, Oñate E. A contact algorithm for shell problems via Delaunay-based meshing of the contact domain. Computational Mechanics 2013; 52:1–16.
Oliver J, Hartmann S, Cante JC, Weyler R, Hernndez J. A contact domain method for large deformation frictional contact problems. Part 1: theoretical basis. Computer Methods in Applied Mechanics and Engineering 2009; 198(33–36):2591–2606.
Hartmann S, Oliver J, Weyler R, Cante JC, Hernndez J. A contact domain method for large deformation frictional contact problems. Part 2: numerical aspects. Computer Methods in Applied Mechanics and Engineering 2009; 198(33-36):2607–2631.
Weyler R, Oliver J, Sain T, Cante JC. On the contact domain method: a comparison of penalty and Lagrange multiplier implementations. Computer Methods in Applied Mechanics and Engineering 2012; 205–208:68–82.
Silliman WJ. Viscous film flows with contact lines: finite element simulation, a basis for stability assessment and design optimization. Ph.D. Thesis, Minnesota University, Minneapolis, 1979.
Saito H, Scriven LE. Study of coating flow by the finite element method. Journal of Computational Physics 1981; 42(1):53–76.
Martin JC, Moyce WJ. Part IV. An experimental study of the collapse of liquid columns on a rigid horizontal plane. Philosophical Transactions of the Royal Society of London A: Mathematical, Physical and Engineering Sciences 1952; 244(882):312–324.
Ritter A. Die fortpanzung de wasserwellen.Zeitschrift Verein Deutscher Ingenieure 1892; 36(33):947–954.
Aubry R, Idelsohn SR, Oate E. Fractional step like schemes for free surface problems with thermal coupling using the Lagrangian PFEM. Computational Mechanics 2006; 38:294–309.
Idelsohn SR, Oñate E. The challenge of mass conservation in the solution of free-surface flows with the fractional-step method: problems and solutions. International Journal for Numerical Methods in Engineering 2010; 26:1313–1330.
Zhu M, Scott MH. Improved fractional step method for simulating fluid–structure interaction using the PFEM. International Journal for Numerical Methods in Engineering 2014; 99(12):925–944.
Koshizuka S, Oka Y. Moving particle semi-implicit method: fully Lagrangian analysis of incompressible flows. In European Congress on Computational Methods in Applied Sciences and Engineering ECCOMAS 2000, 2000. http://congress.cimne.com/eccomas/eccomas2000/html/welcome.htm.
Hirt CW, Nichols BD. Volume of fluid (VOF) method for the dynamics of free boundaries. Journal of Computational Physics 1981; 39:201–225.
Koshizuka S, Tamako H, Oka Y. A particle method for incompressible viscous flow with fluid fragmentation. Computational Fluid Dynamics Journal 1995; 4:29–46.
Dressler RF. Hydraulic resistance effect upon the dam break functions.Journal of Research of the National Bureau of Standards 1952; 49(3):217–225.
Verfürth R. Finite element approximation of incompressible Navier–Stokes equations with slip boundary condition. Numerische Mathematik 1987; 50:697–721.
Verfürth R. Finite element approximation of incompressible Navier–Stokes equations with slip boundary condition II. Numerische Mathematik 1991; 59:615–636.
Urquiza JM, Garon A, Farinas MI. Weak imposition of the slip boundary condition on curved boundaries for Stokes flow. Journal of Computational Physics 2014; 256:748–767.