W. M., Thomas, E. D., Nicholas, J. C., Needham, Murch, M. G., P., Temple-Smith, and C. J., Dawes, 1991, Friction Stir Butt Welding. GB Patent No. 9125978.8, International Patent No. PCT/GB92/02203.
C. S., Wu, W., Zheng, and M. A., Chen, Improving the Prediction Accuracy of Keyhole Establishment Time in Plasma Arc Welding, Numer. Heat Transfer; Part A:Appl., vol. 66, no. 4, pp. 420–432, 2014. doi:10.1080/10407782.2014.884904.
J.H., Sun, C. S., Wu, and M. A., Chen, Numerical Analysis of Transient Temperature Field and Keyhole Geometry in Controlled Pulse Key-Holing Plasma Arc Welding, Numer. Heat Transfer; Part A:Appl., vol. 64, no. 5, pp. 416–434, 2013. doi:10.1080/10407782.2013.784142.
Y.-C., Yang, W.-L., Chen, and H.-L., Lee, A Nonlinear Inverse Problem in Estimating the Heat Generation in Rotary Friction Welding, Numer. Heat Transfer; Part A:Appl., vol. 59, no. 2, pp. 130–149, 2011. doi:10.1080/10407782.2011.540965.
C., Jonckheere, B., de Meester, A., Denquin, and A., Simar, Torque, Temperature and Hardening Precipitation Evolution in Dissimilar Friction Stir Welds Between 6061-T6 and 2014-T6 Aluminum Alloys, J. Mater. Process. Technol., vol. 213, pp. 826–837, 2013. doi:10.1016/j.jmatprotec.2013.01.001.
H., Izadi, A., Nolting, C., Munro, D. P., Bishop, K. P., Plucknett, and A. P., Gerlich, Friction Stir Processing of Al/Sic Composites Fabricated by Powder Metallurgy, J. Mater. Process. Technol., vol. 213, pp. 1900–1907, 2013. doi:10.1016/j.jmatprotec.2013.05.012.
W. M., Thomas and E. D., Nicholas, Friction Stir Welding for the Transportation Industries, Mater. Des., vol. 18, no. 4–6, pp. 269–273, 1997. doi:10.1016/S0261-3069(97)00062-9.
M., Chiumenti, M., Cervera, C., Agelet de Saracibar, and N., Dialami, Numerical Modeling of Friction Stir Welding Processes, Comput. Methods Appl. Mech. Eng., vol. 254, pp. 353–369, 2013. doi:10.1016/j.cma.2012.09.013.
M., Assidi, L., Fourment, S., Guerdoux, and T., Nelson, Friction Model for Friction Stir Welding Process Simulation:Calibrations From Welding Experiments, Inter. J. Mach. Tools Manuf., vol. 50, no. 2, pp. 143–155, 2010. doi:10.1016/j.ijmachtools.2009.11.008.
G., Buffa, J., Hua, R., Shivpuri, and L., Fratini, A Continuum-Based Fem Model for Friction Stir Welding–Model Development, Mater. Sci. Eng.:A, vol. 419, no. 1–2, pp. 389–396, 2006. doi:10.1016/j.msea.2005.09.040.
D., Jacquin, B., de Meester, A., Simar, D., Deloison, F., Montheillet, and C., Desrayaud, A Simple Eulerian Thermomechanical Modeling of Friction Stir Welding, J. Mater. Process. Technol., vol. 211, pp. 57–65, 2011. doi:10.1016/j.jmatprotec.2010.08.016.
E., Feulvarch, J.-C., Roux, and J.-M., Bergheau, A Simple and Robust Moving Mesh Technique for the Finite Element Simulation of Friction Stir Welding, J. Comput. Appl. Math., vol. 246, pp. 269–277, 2013. doi:10.1016/j.cam.2012.07.013.
D., Canales, E., Cueto, E., Feulvarch, and F., Chinesta, First Steps Towards Parametric Modeling of FSW Processes by Using Advanced Separated Representations:Numerical Techniques, Key Eng. Mater., vol. 611–612, 513–520, 2014.
A., Tongne, M., Jahazi, E., Feulvarch, and C., Desrayaud, Banded Structures in Friction Stir Welded Al Alloys, J. Mater. Process. Technol., vol. 221, pp. 269–278, 2015. doi:10.1016/j.jmatprotec.2015.02.020.
N., Dialami, M., Chiumenti, M., Cervera, C., Agelet de Saracibar, and J. P., Ponthot, Material Flow Visualization in Friction Stir Welding Via Particle Tracing, Inter. J. Mater. Form., vol. 8, no. 2, pp. 167–181, 2013. doi:10.1007/s12289-013-1157-4.
D. M., Neto and P., Neto, Numerical Modeling of Friction Stir Welding Process:A Literature Review, Int. J. Adv. Manuf. Technol., vol. 65, no. 1–4, pp. 115–126, 2013. doi:10.1007/s00170-012-4154-8.
P., Bussetta, N., Dialami, R., Boman, M., Chiumenti, C., Agelet de Saracibar, M., Cervera, and J.-P., Ponthot, Comparison of a Fluid and a Solid Approach for the Numerical Simulation of Friction Stir Welding with a Non-Cylindrical Pin, Steel Res. Int., vol. 85, pp. 968–979, 2014. doi:10.1002/srin.201300182.
M., Mehta, G. M., Reddy, A. V., Rao, and A., De, Numerical Modeling of Friction Stir Welding Using the Tools with Polygonal Pins. Defence Technol. doi:10.1016/j.dt.2015.05.001, In Press.
H., Su, C. S., Wu, M., Bachmann, and M., Rethmeier, 2015, Numerical Modeling for the Effect of Pin Profiles on Thermal and Material Flow Characteristics in Friction Stir Welding.Pdf, Mater. Des., vol. 77, pp. 114–125, 2015. doi:10.1016/j.matdes.2015.04.012.
A. I., Toumpis, A. M., Galloway, L., Arbaoui, and N., Poletz, Thermomechanical Deformation Behavior of dh36 Steel During Friction Stir Welding by Experimental Validation and Modelling, Sci. Technol. Weld. Join., vol. 19, no. 8, pp. 653–663, 2014. doi:10.1179/1362171814Y.0000000239.
W., He, B., Luan, R., Xin, J., Xu, and Q., Liu, A Multi-Scale Model for Description of Strain Localization in Friction Stir Welded Magnesium Alloy, Comput. Mater. Sci., vol. 104, pp. 162–171, 2015. doi:10.1016/j.commatsci.2015.04.002.
Simões, F., and D. M., Rodrigues, Material Flow and Thermo-Mechanical Conditions During Friction Stir Welding of Polymers:Literature Review, Experimental Results and Empirical Analysis, Mater. Des., vol. 59, pp. 344–351, 2014. doi:10.1016/j.matdes.2013.12.038.
P., Bussetta, N., Dialami, M., Chiumenti, C., Agelet de Saracibar, M., Cervera, R., Boman, and J.-P., Ponthot, 3D Numerical Models Using A Fluid or a Solid Formulation of FSW Processes with a Non-Cylindrical Pin, Adv. Model. Simul. Eng. Sci., vol. 2, no. 1. doi:10.1186/s40323-015-0048-2.
J., Donéa, A., Huerta, J.-P., Ponthot, and A., Rodríguez-Ferran, 2004, Encyclopedia of Computational Mechanics, Chapter Arbitrary Lagrangian Eulerian Methods. John Wiley & Sons, Ltd. doi:10.1002/0470091355.ecm009.
R., Boman and J.-P., Ponthot, 2012, Efficient ALE Mesh Management for 3D Quasi-Eulerian Problems, Int. J. Numer. Meth. Eng., vol. 92, pp. 857–890, 2015. doi:10.1002/nme.4361.
R., Boman and J.-P., Ponthot, Enhanced ALE Data Transfer Strategy for Explicit and Implicit Thermomechanical Simulations of High-Speed Processes, Int. J. Impact Eng., vol. 53, pp. 62–73, 2013. doi:10.1016/j.ijimpeng.2012.08.007.
N., Dialami, M., Chiumenti, M., Cervera, and C., Agelet de Saracibar, An Apropos Kinematic Framework for the Numerical Modelling of Friction Stir Welding, Comput. Struct., vol. 117, pp. 48–57, 2013. doi:10.1016/j.compstruc.2012.12.006.
E., Feulvarch, J. C., Roux, and J. M., Bergheau Finite Element Modeling of Friction Stir Welding, Thermomechanical Industrial Processes - Modeling and Numerical Simulation. ISTE-Wiley ISBN 978-1-84821-358-6, pp. 155–184.
P., Bussetta, R., Boman, and J.-P., Ponthot, Efficient 3D Data Transfer Operators based on Numerical Integration, Int. J. Numer. Meth. Eng., vol. 102, no. 3–4, pp. 892–929, 2015. doi:10.1002/nme.4821.
A., Simar, T., Pardoen, and B., de Meester, Effect of Rotational Material Flow on Temperature Distribution in Friction Stir Welds, Sci. Technol. Weld. Join., vol. 12, no. 4, pp. 324–333, 2007. doi:10.1179/174329307X197584.
A., Gerlich, M., Yamamoto, and T. H., North, Strain Rates and Grain Growth in Al 5754 and Al 6061 Friction Stir Spot Welds, Metall. Mater. Trans. A, vol. 38, no. 6, pp. 1291–1302, 2007. doi:10.1007/s11661-007-9155-0.
M., Guerra, C., Schmidt, J. C., McClure, L. E., Murr, and A. C., Nunes, Flow Patterns During Friction Stir Welding, Mater. Charact., vol. 49, no. 2, pp. 95–101, 2002. doi:10.1016/S1044-5803(02)00362-5.
J.-C., Roux, E., Feulvarch, and J.-M., Bergheau, Simulation of Material Consequences Induced by FSW for a Trigonal Pin. In:XII Int. Conf. Comput. Plast. Fundam. Appl., pp. 1274–1285, Barcelona, Spain, 2013.
ESI Group, Sysweld User Manual 2014.
C., Agelet de Saracibar, M., Chiumenti, M., Cervera, N., Dialami, and A., Seret, Computational Modeling and Sub-Grid Scale Stabilization of Incompressibility and Convection in the Numerical Simulation of Friction Stir Welding Processes, Arch. Comput. Meth. Eng., vol. 21, no. 1, pp. 3–37, 2014.
S., Guerdoux, 2007, Numerical Simulation of the Friction Stir Welding Process, Ph.D. thesis, Mines ParisTech.