[en] We introduce a generalization of Pascal triangle based on binomial coefficients of finite words. These coefficients count the number of times a finite word appears as a subsequence of another finite word. Similarly to the Sierpiński gasket that can be built as the limit set, for the Hausdorff distance, of a convergent sequence of normalized compact blocks extracted from Pascal triangle modulo 2, we describe and study the first properties of the subset of [0, 1] × [0, 1] associated with this extended Pascal triangle modulo a prime p. Then we create a new sequence from this extended Pascal triangle that counts, on each row of this triangle, the number of positive binomial coefficients. We study some properties of this sequence. To be precise, we investigate some properties regarding the regularity of the sequence. To extend our work, we construct a Pascal triangle using the Fibonacci representations of all the nonnegative integers and we define the corresponding sequence of which we study the regularity. This regularity is an extension of the classical k-regularity of sequences.
Disciplines :
Mathematics
Author, co-author :
Stipulanti, Manon ; Université de Liège > Département de mathématique > Mathématiques discrètes
Language :
English
Title :
Generalized Pascal triangle for binomial coefficients of words : an overview
Publication date :
07 September 2016
Number of pages :
42
Event name :
16th Mons Theoretical Computer Science Days
Event organizer :
Julien Leroy, Michel Rigo (Université de Liège)
Event place :
Liège, Belgium
Event date :
du 5 septembre 2016 au 9 septembre 2016
Audience :
International
Funders :
FRIA - Fonds pour la Formation à la Recherche dans l'Industrie et dans l'Agriculture
Commentary :
Work in collaboration with Julien Leroy (ULg, j.leroy@ulg.ac.be) and Michel Rigo (ULg, m.rigo@ulg.ac.be). // Travail en collaboration avec Julien Leroy (ULg, j.leroy@ulg.ac.be) et Michel Rigo (ULg, m.rigo@ulg.ac.be).