

Generalized Pascal triangle for binomial coefficients of words: an overview

Joint work with Julien Leroy and Michel Rigo

Manon Stipulanti

FRIA grantee

Mons Theoretical Computer Science Days September 7, 2016

Pascal triangle

					k				
		0	1	2	3	4	5	6	7
	0	1	0	0	0	0	0	0	0
	1	1	1	0	0	0	0	0	0
	2	1	2	1	0	0	0	0	0
m	3	1	3	3	1	0	0	0	0
	4	1	4	6	4	1	0	0	0
	5	1	5	10	10	5	1	0	0
	6	1		15		15	6	1	0
	7	1	7	21	35	35	21	7	1

Usual binomial coefficients of integers:

$$\binom{m}{k} = \frac{m!}{(m-k)! \, k!}$$

<u>Definition</u>: A *finite word* is a finite sequence of letters belonging to a finite set called alphabet.

Binomial coefficient of words

Let u, v be two finite words.

The binomial coefficient $\binom{u}{v}$ of u and v is the number of times v occurs as a subsequence of u (meaning as a "scattered" subword).

<u>Definition</u>: A *finite word* is a finite sequence of letters belonging to a finite set called alphabet.

Binomial coefficient of words

Let u, v be two finite words.

The binomial coefficient $\binom{u}{v}$ of u and v is the number of times v occurs as a subsequence of u (meaning as a "scattered" subword).

Example:
$$u = 101001$$
 $v = 101$

<u>Definition</u>: A *finite word* is a finite sequence of letters belonging to a finite set called alphabet.

Binomial coefficient of words

Let u, v be two finite words.

The binomial coefficient $\binom{u}{v}$ of u and v is the number of times v occurs as a subsequence of u (meaning as a "scattered" subword).

Example: u = 101001

v = 101

<u>Definition</u>: A *finite word* is a finite sequence of letters belonging to a finite set called alphabet.

Binomial coefficient of words

Let u, v be two finite words.

The binomial coefficient $\binom{u}{v}$ of u and v is the number of times v occurs as a subsequence of u (meaning as a "scattered" subword).

Example: u = 101001

v = 101

<u>Definition</u>: A *finite word* is a finite sequence of letters belonging to a finite set called alphabet.

Binomial coefficient of words

Let u, v be two finite words.

The binomial coefficient $\binom{u}{v}$ of u and v is the number of times v occurs as a subsequence of u (meaning as a "scattered" subword).

Example: u = 101001

v = 101

<u>Definition</u>: A *finite word* is a finite sequence of letters belonging to a finite set called alphabet.

Binomial coefficient of words

Let u, v be two finite words.

The binomial coefficient $\binom{u}{v}$ of u and v is the number of times v occurs as a subsequence of u (meaning as a "scattered" subword).

Example: u = 101001

v = 101

<u>Definition</u>: A *finite word* is a finite sequence of letters belonging to a finite set called alphabet.

Binomial coefficient of words

Let u, v be two finite words.

The binomial coefficient $\binom{u}{v}$ of u and v is the number of times v occurs as a subsequence of u (meaning as a "scattered" subword).

Example: u = 101001

v = 101

<u>Definition</u>: A *finite word* is a finite sequence of letters belonging to a finite set called alphabet.

Binomial coefficient of words

Let u, v be two finite words.

The binomial coefficient $\binom{u}{v}$ of u and v is the number of times v occurs as a subsequence of u (meaning as a "scattered" subword).

Example: u = 101001

v = 101

<u>Definition</u>: A *finite word* is a finite sequence of letters belonging to a finite set called alphabet.

Binomial coefficient of words

Let u, v be two finite words.

The binomial coefficient $\binom{u}{v}$ of u and v is the number of times v occurs as a subsequence of u (meaning as a "scattered" subword).

Example:
$$u = 101001$$
 $v = 101$
$$\Rightarrow \begin{pmatrix} 101001 \\ 101 \end{pmatrix} = 6$$

Remark:

Natural generalization of binomial coefficients of integers

With a one-letter alphabet $\{a\}$

$$\begin{pmatrix} a^m \\ a^k \end{pmatrix} = \begin{pmatrix} \overbrace{a \cdots a}^{m \text{ times}} \\ \underbrace{a \cdots a}_{k \text{ times}} \end{pmatrix} = \begin{pmatrix} m \\ k \end{pmatrix} \quad \forall \, m, k \in \mathbb{N}$$

Link between the Pascal triangle and the Sierpiński gasket

					k				
		0	1	2	3	4	5	6	7
	1	1	0	0	0	0	0	0	0
	1	1	1	0	0	0	O	0	0
	2	1	2	1	0	0	0	0	0
m	3	1	3	3	1	0	0	0	0
	4	1	4	6	4	1	0	0	0
	5	1	5	10	10	5	1	0	0
	6	1	6	15	20	15	6	1	0
	7	1	7	21	35	35	21	7	1

Usual binomial coefficients of integers:

$$\binom{m}{k} = \frac{m!}{(m-k)! \, k!}$$

A way to build the Sierpiński gasket:

Link between the Pascal triangle and the Sierpiński gasket

2 1 2 1 0	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0 0 0
2 1 2 1 0	
	0 0 0
m 3 1 3 3 1 (0 0 0
m 3 1 1 3 3 1 (0 0 0
4 1 4 6 4	0 0 0
5 1 5 10 10 5	5 1 0 0
6 1 6 15 20 1	5 6 1 0
7 1 7 21 35 3	

Usual binomial coefficients of integers:

$$\binom{m}{k} = \frac{m!}{(m-k)! \, k!}$$

A way to build the Sierpiński gasket:

• Grid: intersection between \mathbb{N}^2 and $[0, 2^n] \times [0, 2^n]$

• Color the grid: Color the first 2^n rows and columns of the Pascal triangle

$$\left(\binom{m}{k} \bmod 2\right)_{0 \le m, k < 2^n}$$

in

- white if $\binom{m}{k} \equiv 0 \mod 2$
- black if $\binom{m}{k} \equiv 1 \mod 2$

• Color the grid: Color the first 2^n rows and columns of the Pascal triangle

$$\left(\binom{m}{k} \bmod 2\right)_{0 \le m, k < 2^n}$$

in

- white if $\binom{m}{k} \equiv 0 \mod 2$
- black if $\binom{m}{k} \equiv 1 \mod 2$
- Normalize by a homothety of ratio $1/2^n$
 - \leadsto sequence belonging to $[0,1]\times[0,1]$

The first six elements of the sequence

The tenth element of the sequence

Theorem [von Haeseler, Peitgen, Skordev, 1992]

This sequence converges, for the Hausdorff distance, to the Sierpiński gasket (when n tends to infinity).

Theorem [von Haeseler, Peitgen, Skordev, 1992]

This sequence converges, for the Hausdorff distance, to the Sierpiński gasket (when n tends to infinity).

Definitions:

• ϵ -fattening of a subset $S \subset \mathbb{R}^2$

$$[S]_{\epsilon} = \bigcup_{x \in S} B(x, \epsilon)$$

• $(\mathcal{H}(\mathbb{R}^2), d_h)$ complete space of the non-empty compact subsets of \mathbb{R}^2 equipped with the *Hausdorff distance* d_h

$$d_h(S, S') = \min\{\epsilon \in \mathbb{R}_{\geq 0} \mid S \subset [S']_{\epsilon} \text{ and } S' \subset [S]_{\epsilon}\}$$

<u>Idea</u>: binomial coefficients of integers

→ binomial coefficients of words

<u>Idea</u>: binomial coefficients of integers

→ binomial coefficients of words

Definitions:

- rep₂(n) greedy base-2 expansion of $n \in \mathbb{N}_{>0}$ beginning by 1
- $\operatorname{rep}_2(0) = \varepsilon$ where ε is the empty word

First values of the generalized Pascal triangle

 \leadsto base-2 expansions ordered genealogically (first by length, then lexicographically)

					v				
		ε	1	10	11	100	101	110	111
	ε	1	0	0	0	0	0	0	0
	1	1	1	0	0	0	0	0	0
	10	1	1	1	0	0	0	0	0
u	11	1	2	0	1	0	0	0	0
	100	1	1	2	0	1	0	0	0
	101	1	2	1	1	0	1	0	0
	110	1	2	2	1	0	0	1	0
	111	1	3	0	3	0	0	0	1

First values of the generalized Pascal triangle

 \leadsto base-2 expansions ordered genealogically (first by length, then lexicographically)

					v				
		ε	1	10	11	100	101	110	111
	ε	1	0	0	0	0	0	0	0
	1	1	1	0	0	0	0	0	0
	10	1	1	1	0	0	0	0	0
u	11	1	2	0	1	0	0	0	0
	100	1	1	2	0	1	0	0	0
	101	1	2	1	1	0	1	0	0
	110	1	2	2	1	0	0	1	0
	111	1	3	0	3	0	0	0	1

The classical Pascal triangle

Questions:

- After coloring and normalization can we expect the convergence to an analogue of the Sierpiński gasket?
- Could we describe this limit object?

Same construction

• Grid: intersection between \mathbb{N}^2 and $[0,2^n]\times[0,2^n]$

• Color the grid:

Color the first 2^n rows and columns of the generalized Pascal triangle

$$\left(\begin{pmatrix} \operatorname{rep}_2(m) \\ \operatorname{rep}_2(k) \end{pmatrix} \bmod 2 \right)_{0 \le m, k < 2^n}$$

in

- white if $\binom{\operatorname{rep}_2(m)}{\operatorname{rep}_2(k)} \equiv 0 \mod 2$ black if $\binom{\operatorname{rep}_2(m)}{\operatorname{rep}_k(k)} \equiv 1 \mod 2$

• Color the grid: Color the first 2^n rows and columns of the generalized Pascal triangle

$$\left(\begin{pmatrix} \operatorname{rep}_2(m) \\ \operatorname{rep}_2(k) \end{pmatrix} \bmod 2 \right)_{0 \le m, k < 2^n}$$

in

- white if $\binom{\text{rep}_2(m)}{\text{rep}_2(k)} \equiv 0 \mod 2$ black if $\binom{\text{rep}_2(m)}{\text{rep}_2(k)} \equiv 1 \mod 2$
- Normalize by a homothety of ratio $1/2^n$
 - \rightarrow sequence belonging to $[0,1] \times [0,1]$

The first six elements of the sequence

The tenth element of the sequence

Main result

Theorem [Leroy, Rigo, S., 2016]

The sequence converges to a limit object \mathcal{L} .

Topological closure of a union of segments described through a simple combinatorial property

Extension modulo p

Simplicity: coloring regarding the parity of binomial coefficients

Extension

Everything still holds for binomial coefficients $\equiv r \mod p$ with

- base-2 expansions of integers
- p a prime
- $r \in \{1, \dots, p-1\}$

Example with p = 3, r = 2

Left: binomial coefficients $\equiv 2 \mod 3$

Right: estimate of the corresponding limit object

Counting the positive binomial coefficients

					v					
		ε	1	10	11	100	101	110	111	S
	ε	1	0	0	0	0	0	0	0	1
	1	1	1	0	0	0	0	0	0	2
	10	1	1	1	0	0	0	0	0	3
u	11	1	2	0	1	0	0	0	0	3
	100	1	1	2	0	1	0	0	0	4
	101	1	2	1	1	0	1	0	0	5
	110	1	2	2	1	0	0	1	0	5
	111	1	3	0	3	0	0	0	1	4

<u>Definition</u>: $\forall n \geq 1$

S(n) = number of non-zero elements in the nth row of the generalized Pascal triangle

$$= \# \left\{ \begin{pmatrix} \operatorname{rep}_2(n-1) \\ \operatorname{rep}_2(m) \end{pmatrix} > 0 \mid m \in \mathbb{N} \right\}$$

$$S(0) = 1$$

First few terms of $(S(n))_{n>0}$:

$$1, 1, 2, 3, 3, 4, 5, 5, 4, 5, 7, 8, 7, 7, 8, 7, 5,$$

$$6, 9, 11, 10, 11, 13, 12, 9, 9, 12, 13, 11, 10, \dots$$

The sequence $(S(n))_{n>0}$ in the interval [0, 256]

Palindromic structure \leadsto regularity

Some properties of the sequence $(S(n))_{n\geq 0}$

• 2-kernel of h

$$\mathcal{K}_2(h) = \{h(n), h(2n), h(2n+1), h(4n), h(4n+1), h(4n+2), \ldots\}$$

= \{(h(2^i n + j))_{n \geq 0} \| i \geq 0 \text{ and } 0 \leq j < 2^i\}

Some properties of the sequence $(S(n))_{n\geq 0}$

• 2-kernel of h

$$\mathcal{K}_2(h) = \{h(n), h(2n), h(2n+1), h(4n), h(4n+1), h(4n+2), \dots\}$$
$$= \{(h(2^i n + j))_{n \ge 0} \mid i \ge 0 \text{ and } 0 \le j < 2^i\}$$

• 2-regular if there exist

$$(t_1(n))_{n\geq 0},\ldots,(t_{\ell}(n))_{n\geq 0}$$

s.t. each $(t(n))_{n\geq 0} \in \mathcal{K}_2(h)$ is a \mathbb{Z} -linear combination of the t_j 's

Some properties of the sequence $(S(n))_{n\geq 0}$

• 2-kernel of h

$$\mathcal{K}_2(h) = \{h(n), h(2n), h(2n+1), h(4n), h(4n+1), h(4n+2), \ldots\}$$
$$= \{(h(2^i n + j))_{n \ge 0} \mid i \ge 0 \text{ and } 0 \le j < 2^i\}$$

• 2-regular if there exist

$$(t_1(n))_{n\geq 0},\ldots,(t_{\ell}(n))_{n\geq 0}$$

s.t. each $(t(n))_{n\geq 0}\in \mathcal{K}_2(h)$ is a \mathbb{Z} -linear combination of the t_j 's

Proposition [Leroy, Rigo, S., 2016]

 $(S(n))_{n>0}$ is 2-regular.

Proposition [Leroy, Rigo, S., 2016]

 $(S(n))_{n\geq 0}$ is not 2-automatic.

Proposition [Leroy, Rigo, S., 2016]

 $(S(n))_{n>0}$ is not 2-automatic.

• 2-synchronized if the language

$$\{\operatorname{rep}_2(n,h(n))\mid n\in\mathbb{N}\}$$

is accepted by some finite automaton

Proposition [Leroy, Rigo, S., 2016]

 $(S(n))_{n>0}$ is not 2-automatic.

• 2-synchronized if the language

$$\{\operatorname{rep}_2(n, h(n)) \mid n \in \mathbb{N}\}\$$

is accepted by some finite automaton

Proposition [Leroy, Rigo, S., 2016]

 $(S(n))_{n\geq 0}$ is not 2-synchronized.

Remark: 2-automatic \subseteq 2-synchronized \subseteq 2-regular.

The Fibonacci case

<u>Definitions</u>:

- $\operatorname{rep}_F(n)$ greedy Fibonacci representation of $n \in \mathbb{N}_{>0}$ beginning by 1
- $\operatorname{rep}_F(0) = \varepsilon$ where ε is the empty word

					v					
		ε	1	10	100	101	1000	1001	1010	S_F
	ε	1	0	0	0	0	0	0	0	1
	1	1	1	0	0	0	0	0	0	2
	10	1	1	1	0	0	0	0	0	3
	100	1	1	2	1	0	0	0	0	4
u	101	1	2	1	0	1	0	0	0	4
	1000	1	1	3	3	0	1	0	0	5
	1001	1	2	2	1	2	0	1	0	6
	1010	1	2	3	1	1	0	0	1	6

Definition: $\forall n \geq 0$

$$S_F(n) = \# \left\{ \begin{pmatrix} \operatorname{rep}_F(n) \\ \operatorname{rep}_F(m) \end{pmatrix} > 0 \mid m \in \mathbb{N} \right\}$$

First few terms of $(S_F(n))_{n\geq 0}$:

$$1, 2, 3, 4, 4, 5, 6, 6, 6, 8, 9, 8, 8, 7, 10, 12,$$

 $12, 12, 10, 12, 12, 8, 12, 15, 16, 16, 15, \dots$

The sequence $(S_F(n))_{n>0}$ in the interval [0,233]

F-kernel and F-regularity

2-kernel $\mathcal{K}_2(h)$ of a sequence h

- Select all the nonnegative integers whose base-2 expansion (with leading zeroes) ends with $w \in \{0,1\}^*$
- Evaluate h at those integers
- Let w vary in $\{0,1\}^*$

$\mathbf{w} = \mathbf{0}$

n	$rep_2(n)$	h(n)
	/	· /
0	$oldsymbol{arepsilon}$	$\mathbf{h}(0)$
1	1	h(1)
2	10	$\mathbf{h}(2)$
3	11	h(3)
4	100	h(4)
5	101	h(5)

F-kernel $\mathcal{K}_F(h)$ of a sequence h

- Select all the nonnegative integers whose Fibonacci representation (with leading zeroes) ends with $w \in \{0, 1\}^*$
- Evaluate h at those integers
- Let w vary in $\{0,1\}^*$

n	$rep_F(n)$	h(n)
0	ε	$\mathbf{h}(0)$
1	1	h(1)
2	10	$\mathbf{h}(2)$

100

101

1000

3

5

h(3)

h(4)

Property of the sequence $(S_F(n))_{n\geq 0}$

F-regular if there exist

$$(t_1(n))_{n\geq 0},\ldots,(t_{\ell}(n))_{n\geq 0}$$

s.t. each $(t(n))_{n\geq 0}\in \mathcal{K}_F(h)$ is a \mathbb{Z} -linear combination of the t_j 's

Property of the sequence $(S_F(n))_{n\geq 0}$

F-regular if there exist

$$(t_1(n))_{n>0},\ldots,(t_{\ell}(n))_{n>0}$$

s.t. each $(t(n))_{n\geq 0}\in \mathcal{K}_F(h)$ is a \mathbb{Z} -linear combination of the t_j 's

Proposition [Leroy, Rigo, S., 2016]

 $(S_F(n))_{n>0}$ is F-regular.

In the literature, not so many sequences that have this kind of property

Work in progress

Study the

- behavior of the summatory function of $(S(n))_{n>0}$
- behavior of the summatory function of $(S_F(n))_{n>0}$

Work in progress

Study the

- behavior of the summatory function of $(S(n))_{n\geq 0}$
- behavior of the summatory function of $(S_F(n))_{n\geq 0}$

Example:
$$s_2(n)$$
 number of 1's in $\operatorname{rep}_2(n)$
 s_2 is 2-regular
 $summatory\ function\ N \mapsto \sum_{j=0}^{N-1} s_2(j)$

Theorem [Delange, 1975]

$$\frac{1}{N} \sum_{j=0}^{N-1} s_2(j) = \frac{1}{2} \log_2 N + \mathcal{G}(\log_2 N)$$
 (1)

where \mathcal{G} continuous, nowhere differentiable, periodic of period 1.

Theorem [Delange, 1975]

$$\frac{1}{N} \sum_{j=0}^{N-1} s_2(j) = \frac{1}{2} \log_2 N + \mathcal{G}(\log_2 N)$$
 (1)

where \mathcal{G} continuous, nowhere differentiable, periodic of period 1.

Theorem [Allouche, Shallit, 2003]

Under some hypotheses, the summatory function of every kregular sequence has a behavior analogous to (1).

Theorem [Delange, 1975]

$$\frac{1}{N} \sum_{j=0}^{N-1} s_2(j) = \frac{1}{2} \log_2 N + \mathcal{G}(\log_2 N) \tag{1}$$

where \mathcal{G} continuous, nowhere differentiable, periodic of period 1.

Theorem [Allouche, Shallit, 2003]

Under some hypotheses, the summatory function of every k-regular sequence has a behavior analogous to (1).

 \rightsquigarrow Replacing s_2 by S and S_F : same behavior as (1) but do not satisfy the previous theorem