Aifantis, E., On the microstructural origin of certain inelastic models. ASME. J. Eng. Matr. Technol. 106(4) (1984), 326–330.
Alonso-Marroquín, F., Luding, S., Herrmann, H.J., Vardoulakis, I., Role of anisotropy in the elastoplastic response of a polygonal packing. Phys. Rev. E, 71, 2005, 051304.
Bésuelle, P., Chambon, R., Collin, F., Switching deformation modes in post-localization solutions with a quasibrittle material. J. Mech. Mat. Str. 1 (2006), 1115–1134.
Bilbie, G., Dascalu, C., Chambon, R., Caillerie, D., Micro-fracture instabilities in granular solids. Acta Geotechnica 3:1 (2008), 25–35.
Biot, M., General theory of three-dimensional consolidation. J. Appl. Phys. 12:2 (1941), 155–164.
Camacho, G., Ortiz, M., Computational modelling of impact damage in brittle materials. Int. J. Solids Struct. 33:20 - 22 (1996), 2899–2938.
Chambon, R., Caillerie, D., Existence and uniqueness theorems for boundary value problems involving incrementally non linear models. Int. J. Solids Struct. 36:33 (1999), 5089–5099.
Chambon, R., Caillerie, D., Hassan, N.E., One-dimensional localisation studied with a second grade model. Eur. J. Mech. - A/Solids 17:4 (1998), 637–656.
Chambon, R., Caillerie, D., Matsuchima, T., Plastic continuum with microstructure, local second gradient theories for geomaterials: localization studies. Int. J. Solids Struct. 38:46–47 (2001), 8503–8527.
Chambon, R., Moullet, J., Uniqueness studies in boundary value problems involving some second gradient models. Comput. Methods Appl. Mech. Eng. 193:27 - 29 (2004), 2771–2796 http://dx.doi.org/10.1016/j.cma.2003.10.017.
Charlier, R., Approche unifiée de quelques problémes non linéaires de mécanique des milieux continus par la méthode des éléments finis (grandes déformations des métaux et des sols, contact unilatéral de solides, conduction thermique et écoulements en milieu poreux), 1987, Université de Liège, Belgium Ph.D. thesis.
Coenen, E., Kouznetsova, V., Geers, M., Enabling microstructure-based damage and localization analyses and upscaling. Model. Simul. Mater. Sci. Eng. 19 (2011), 1–15.
Coenen, E., Kouznetsova, V., Geers, M., Novel boundary conditions for strain localization analyses in microstructural volume elements. Int. J. for Num. Meth. in Eng. 90 (2011), 1–21.
Collin, F., Chambon, R., Charlier, R., A finite element method for poro mechanical modelling of geotechnical problems using local second gradient models. Int. J. Numer. Methods Eng. 65:11 (2006), 1749–1772.
Cosserat, E., Cosserat, F., Théorie des corps déformables. 1909, Librairie scientifique A. Hermann et fils, Paris, France.
Coussy, O., Mechanics of Porous Continua. 1995, Wiley.
van den Eijnden, B., Multiscale modelling of the hydromechanical behaviour of argillaceous rocks, 2015, Université Grenoble Alpes Ph.D. thesis.
El Moustapha, K., Identification d'une loi de comportement enrichie pour les géomatériaux en présence d'une localisation de la déformation, 2014, Université de Grenoble Ph.D. thesis.
Feyel, F., A multilevel finite element method (FE2) to describe the response of highly non-linear structures using generalized continua. Comput. Methods Appl. Mech. Eng. 192:28/30 (2003), 3233–3244 Multiscale Computational Mechanics for Materials and Structures.
Feyel, F., Chaboche, J.-L., FE2 multiscale approach for modelling the elastoviscoplastic behaviour of long fibre sic/ti composite materials. Comput. Methods Appl. Mech. Eng. 183:3–4 (2000), 309–330.
Frey, J., Dascalu, C., Chambon, R., A two-scale poromechanical model for cohesive rocks. Acta Geotechnica 7 (2012), 1–18.
Fritzen, F., Böhlke, T., Schnack, E., Periodic three-dimensional mesh generation for crystalline aggregates based on Voronoi tessellations. Comput. Mech. 43:5 (2009), 701–713.
Geers, M., Kouznetsova, V., Brekelmans, W., Multi-scale computational homogenization: Trends and challenges. J. Comput. Appl. Math. 234:7 (2010), 2175–2182.
Germain, P., La méthode des puissances virtuelles en mécanique des milieux continus. J. Mécanique 12 (1973), 235–274.
Geubelle, P., Baylor, J., Impact-induced delamination of composites: a 2d simulation. Composites Part B 29:5 (1998), 589–602.
Hill, R., A self-consistent mechanics of composite materials. J. Mech. Phys. Solids 13 (1965), 213–222.
Jänicke, R., Diebels, S., Sehlhorst, H.-G., Düster, A., Two-scale modelling of micromorphic continua. Continuum Mech. Thermodyn. 21:4 (2009), 297–315.
Jänicke, R., Quintal, B., Steeb, H., Numerical homogenization of mesoscopic loss in poroelastic media. Eur. J. Mech. - A/Solids 49:0 (2015), 382–395.
Terada, K., Hori, M., Kyoya, T., Kikuchi, N., Simulation of the multi-scale convergence in computational homogenization approaches. Int. J. Solids Struct. 37 (2000), 2285–2311.
Kotronis, P., Al Holo, S., Bésuelle, P., Chambon, R., Shear softening and localization: Modelling the evolution of the width of the shear zone. Acta Geotechnica 3:2 (2008), 85–97.
Kouznetsova, V., Brekelmans, W.A.M., Baaijens, F.P.T., An approach to micro-macro modeling of heterogeneous materials. Comput. Mech. 27:1 (2001), 37–48.
Kouznetsova, V., Geers, M., Brekelmans, W., Multi-scale second-order computational homogenization of multi-phase materials: a nested finite element strategy. Comp. Methode Appl. Mech. Engg 193 (2004), 5525–5550.
Marinelli, F., van den Eijnden, A., Sieffert, Y., Chambon, R., Collin, F., Modeling of granular solids with computational homogenization: comparison with biot's theory. Finite Elements Anal. Design 119 (2016), 45–62.
Massart, T., Selvadurai, A., Stress-induced permeability evolution in a quasi-brittle geomaterial. J. Geophys. Res. 117 (2012), 1–15.
Massart, T., Selvadurai, A., Computational modelling of crack-induced permeability evolution in granite dilatant cracks. Int. J. Rock Mech. Mining Sci. 70 (2014), 593–604.
Matsushima, T., Chambon, R., Caillerie, D., Large strain finite element analysis of a local second gradient model: application to localization. Int. J. for Num. Meth. in Eng. 54 (2002), 499–521.
Mercatoris, B., Massart, T., Sluys, L., A multi-scale computational scheme for anisotropic hydro-mechanical couplings in saturated heterogeneous porous media. Van Mier, J.G.M., Ruiz, G., Andrade, C., Yu, R.C., Zhang, X.X., (eds.) Proceedings of the VIIIth International Conference on Fracture Mechanics of Concrete and Concrete Structures - FraMCoS-8, 2014.
Mercatoris, B.C.N., Massart, T.J., A coupled two-scale computational scheme for the failure of periodic quasi-brittle thin planar shells and its application to masonry. Int. J. Numer. Methods Eng. 85:9 (2011), 1177–1206.
Miehe, C., Koch, A., Computational micro-to-macro transitions of discretized microstructures undergoing small strain. Arch. Appl. Mech. 72 (2002), 300–317.
Mindlin, R., Micro-structure in linear elasticity. Arch. Rational Mech. Anal. 16 (1964), 51–78.
Mindlin, R., Second gradient of strain and surface-tension in linear elasticity. Int. J. Solids Struct. 1 (1965), 417–438.
Nguyen, V., Lloberas-Valls, O., Stroeven, M., Sluys, L., Homogenization-based multiscale crack modelling: from micro-diffusive damage to macro-cracks. Comput. Methods Appl. Mech. Engrg. 200 (2011), 1220–1236.
Nguyen, V.-D., Noels, L., Computational homogenization of cellular materials. Int. J. Solids Struct. 51:11–12 (2014), 2183–2203.
Özdemir, I., Brekelmans, W., Geers, M., FE2 computational homogenization for the thermo-mechanical analysis of heterogeneous solids. Comput. Methods Appl. Mech. Engrg. 198 (2008), 602–613.
Özdemir, I., Brekelmans, W.A.M., Geers, M.G.D., Computational homogenization for heat conduction in heterogeneous solids. Int. J. Numer. Methods Eng. 73:2 (2008), 185–204.
Schanz, M., 2009. Poroelastodynamics: linear models, analytical solutions, and numerical methods 62(3).
Schröder, J., A numerical two-scale homogenization scheme: the FE2–method. Plasticity and Beyond, vol. 550, 2014, Springer, 1–64.
van der Sluis, O., Schreurs, P., Brekelmans, W., Meijer, H., Overall behaviour of heterogeneous elastoviscoplastic materials: effect of microstructural modelling. Mech. Mater. 32 (2000), 449–462.
Sonon, B., Franćois, B., Massart, T., A unified level set based methodology for fast generation of complex microstructural multi-phase {RVEs}. Comput. Methods Appl. Mech. Eng. 223–224:0 (2012), 103–122.
Terada, K., Kikuchi, N., Nonlinear homogenization method for practical applications. ASME applied mechanics division-publications-AMD, 212, 1995, ASME, 1–16.
Toro, S., Sánchez, P., Huespe, A., Giusti, S., Blanco, P., Feijóo, R., A two-scale failure model for heterogeneous materials: numerical implementation based on the finite element method. Int. J. Numer. Methods Eng. 97:5 (2014), 313–351.
Yao, C., Jiang, Q., Shao, J., Zhou, C., A discrete approach for modeling damage and failure in anisotropic cohesive brittle materials. Eng. Fracture Mech, 2016.