[en] Using infochemicals to develop a push–pull strategy in pest control is a potential way to promote
sustainable crop production. Infochemicals from plant essential oils were mixed with paraffin oil for
slow release in field experiments on wheat to control the population density of cereal aphids and to
enhance their natural enemies. (Z)-3-Hexenol (Z3H) attracted Metopolophum dirhodum and Sitobion
avenae, the predominant species on wheat in Belgium, and may be a useful infochemical for aphid
control by attracting aphids away from field plots. Release of (E)-β-farnesene (EBF) or a garlic extract
(GE) led to a significant decrease in the abundance of wheat aphids. The main natural enemies of cereal
aphids found were lacewings (47.8%), hoverflies (39.4%), and ladybirds (12.8%). Ladybird abundance
varied little before the end of the wheat-growing season. Our results suggest that these chemicals can
form the basis of a “push–pull” strategy for aphid biological control, with GE and EBF acting as a pestand
beneficial-pulling stimulus and Z3H for aphid pulling.
Disciplines :
Entomology & pest control
Author, co-author :
Zhou, Haibo; Chinese Academy of Agricultural Science > Institute of Plant Protection > State Key Laboratory for Biology of Plant Disease and Insect Pests
Chen, Longsheng; Anhui Academy of Science and Technology/ Applied Technology, Heifei230088, PR China,
Liu, Yong; Shandong Agricultural University, Taian, 271018 China
Chen, Julian; Chinese Academy of Agricultural Sciences, Beijing, 100193, PR China > Institute of Plant Protection > State Key Laboratory for Biology of Plant Disease and Insect Pests
Francis, Frédéric ; Université de Liège > Agronomie, Bio-ingénierie et Chimie (AgroBioChem) > Entomologie fonctionnelle et évolutive
Language :
English
Title :
Use of slow-release plant infochemicals to control aphids: a first investigation in a Belgian wheat field
Liu, Y., Wang, W. L., Guo, G. X., Ji, X. L. Volatile emission in wheat and parasitism by Aphidius avenae after exogenous application of salivary enzymes of Sitobion avenae. Entomol Exp Appl 130, 215-221, (2009).
Van Emden, H. F., Harrington, R. Aphids as crop pests. (CAB International, 2007).
Poehling, H. M., Freier, B., Klüken, A. M. In Aphids as crop pests (eds Van Emden, H. F., Harrington, R.) 597-611 (CAB International, 2007).
Kindlmann, P., Dixon, A. F. G. In Aphid Biodiversity under Environmental Change (eds Pavel Kindlmann, A. F. G. Dixon & J. P. Michaud) 1-20 (Springer Netherlands, 2010).
Leslie, T. W., Van Der Werf, W., Bianchi, F. J. J. A., Honk, A. Population dynamics of cereal aphids: influence of a shared predator and weather. Agric For Entomol 11, 73-82 (2009).
Wang, G. et al. Combining intercropping with semiochemical releases: optimization of alternative control of Sitobion avenae in wheat crops in China. Entomol Exp Appl 140, 189-195 (2011).
Lee, J. C. Effect of Methyl Salicylate-Based Lures on Beneficial and Pest Arthropods in Strawberry. Environ Entomol 39, 653-660 (2010).
James, D. G. Further Field Evaluation Of Synthetic Herbivore-Induced Plan Volatiles As Attractants For Beneficial Insects. J Chem Ecol 31, 481-495 (2005).
James, D., Grasswitz, T. Synthetic Herbivore-induced Plant Volatiles Increase Field Captures of Parasitic Wasps. BioControl 50, 871-880 (2005).
De Boer, J. G., Dicke, M. The Role of Methyl Salicylate in Prey Searching Behavior of the Predatory Mite Phytoseiulus persimilis. J Chem Ecol 30, 255-271 (2004).
Snoeren, T. et al. The Herbivore-Induced Plant Volatile Methyl Salicylate Negatively Affects Attraction of the Parasitoid Diadegma semiclausum. J Chem Ecol 36, 479-489 (2010).
Yu, H., Zhang, Y., Wu, K., Gao, X. W., Guo, Y. Y. Field-Testing of Synthetic Herbivore-Induced Plant Volatiles as Attractants for Beneficial Insects. Environ Entomol 37, 1410-1415 (2008).
James, D. G., Price, T. S. Field-Testing of Methyl Salicylate for Recruitment and Retention of Beneficial Insects in Grapes and Hops. J Chem Ecol 30, 1613-1628 (2004).
Plepys, D., Ibarra, F., Löfstedt, C. Volatiles from flowers of Platanthera bifolia (Orchidaceae) attractive to the silver Y moth, Autographa gamma (Lepidoptera: Noctuidae). Oikos 99, 69-74 (2002).
Prinsloo, G. et al. Test of semiochemicals and a resistant wheat variety for Russian wheat aphid management in South Africa. J Appl Entomol 131, 637-644 (2007).
Ninkovic, V., Ahmed, E., Glinwood, R., Pettersson, J. Effects of two types of semiochemical on population development of the bird cherry oat aphid Rhopalosiphum padi in a barley crop. Agric For Entomol 5, 27-34 (2003).
Turlings, T. C. J., Tumlinson, J. H., Lewis, W. J. Exploitation of Herbivore-Induced Plant Odors by Host-Seeking Parasitic Wasps. Science 250, 1251-1253 (1990).
Howard, R. W., Blomquist, G. J. Ecological, behavioral, and biochemical aspects of insect hydrocarbons. Annu Rev Entomol 50, 371-393 (2005).
Dicke, M., Sabelis, M. W. How Plants Obtain Predatory Mites as Bodyguards. Netherlands Journal of Zoology 38, 148-165 (1987).
Dicke, M., Sabelis, M. W., Takabayashi, J., Bruin, J., Posthumus, M. A. Plant strategies of manipulating predatorprey interactions through allelochemicals: Prospects for application in pest control. J Chem Ecol 16, 3091-3118 (1990).
Pettersson, J., Quiroz, A., Stephansson, D., Niemeyer, H. Odour communication of Rhopalosiphum padi on grasses. ENTOMOL EXP APPL 76, 325-328 (1995).
Park, I. I. K. et al. Fumigant activity of plant essential oils and components from horseradish (Armoracia rusticana), anise (Pimpinella anisum) and garlic (Allium sativum) oils against Lycoriella ingenua (Diptera: Sciaridae). Pest Manag Sci 62, 723-728 (2006).
Pickett, J. A., Wadhams, L. J., Woodcock, C. M. New approaches to the development of semiochemicals for insect control. 333-345 (Hague, 1991).
Park, I.-K., Shin, S.-C. Fumigant Activity of Plant Essential Oils and Components from Garlic (Allium sativum) and Clove Bud (Eugenia caryophyllata) Oils against the Japanese Termite (Reticulitermes speratus Kolbe). Journal of Agricultural and Food Chemistry 53, 4388-4392 (2005).
Park, I.-K. et al. Nematicidal activity of plant essential oils and components from garlic (Allium sativum) and cinnamon (Cinnamomum verum) oils against the pine wood nematode (Bursaphelenchus xylophilus). Nematology 7, 767-774 (2005).
Francis, F., Vandermoten, S., Verheggen, F., Lognay, G., Haubruge, E. Is the (E)-farnesene only volatile terpenoid in aphids J Appl Entomol 129, 6-11 (2005).
Crock, J., Wildung, M., Croteau, R. Isolation and bacterial expression of a sesquiterpene synthase cDNA clone from peppermint (Mentha x piperita, L.) that produces the aphid alarm pheromone (E)-beta-farnesene. Proc. Natl. Acad. Sci. USA 94, 12833-12838 (1997).
Francis, F., Lognay, G., Haubruge, E. Olfactory Responses to Aphid and Host Plant Volatile Releases: (E)-Farnesene an Effective Kairomone for the Predator Adalia bipunctata. J Chem Ecol 30, 741-755 (2004).
Verheggen, F. et al. Electrophysiological and behavioral responses of the multicolored Asian lady beetle, Harmonia axyridis pallas, to sesquiterpene semiochemicals. J Chem Ecol 33, 2148-2155 (2007).
Cui, L.-L. et al. The functional significance of E-Farnesene: Does it influence the populations of aphid natural enemies in the fields Biol Control 60, 108-112 (2012).
Zhu, J., Cossé, A. A., Obrycki, J. J., Boo, K. S., Baker, T. C. Olfactory Reactions of the Twelve-Spotted Lady Beetle, Coleomegilla maculata and the Green Lacewing, Chrysoperla carnea to Semiochemicals Released from Their Prey and Host Plant: Electroantennogram and Behavioral Responses. J Chem Ecol 25, 1163-1177 (1999).
Almohamad, R., Verheggen, F. J., Francis, F., Haubruge, E. Predatory hoverflies select their oviposition site according to aphid host plant and aphid species. Entomol Exp Appl 125, 13-21 (2007).
Wohlers, P. Effect of alarm pheromone (E)-farnesene on aphid behaviour during flight and after landing on plants. Zeitschrift für Angewandte Entomologie 93, 102-108 (1982).
Edwards, L. J., Siddall, J. B., Dunham, L. L., Uden, P., Kislow, C. J. Trans-[beta]-farnesene, Alarm Pheromone of the Green Peach Aphid, Myzus persicae (Sulzer). Nature 241, 126-127 (1973).
Pickett, J. A., Griffiths, D. C. Composition of aphid alarm pheromones. J Chem Ecol 6, 349-360 (1980).
Vandermoten, S., Mescher, M. C., Francis, F., Haubruge, E., Verheggen, F. J. Aphid alarm pheromone: An overview of current knowledge on biosynthesis and functions. Insect Biochemistry and Molecular Biology 42, 155-163 (2012).
Wei, J. N., Kang, L. Roles of (Z)-3-hexenol in plant-insect interactions. Plant Signaling & Behavior 6, 369-371 (2011).
Grant, G. G., Ryall, K. L., Lyons, D. B., Abou-Zaid, M. M. Differential response of male and female emerald ash borers (Col., Buprestidae) to (Z)-3-hexenol and manuka oil. J Appl Entomol 134, 26-33 (2010).
Crook, D. J. et al. Laboratory and Field Response of the Emerald Ash Borer (Coleoptera: Buprestidae), to Selected Regions of the Electromagnetic Spectrum. J Econ Entomol 102, 2160-2169 (2009).
Dorn, S. et al. Response of female Cydia molesta (Lepidoptera: Tortricidae) to plant derived volatiles. Bull Entomol Res 93, 335-342 (2003).
Laubertie, E. A., Wratten, S. D., Sedcole, J. R. The role of odour and visual cues in the pan-trap catching of hoverflies (Diptera: Syrphidae). Ann Appl Biol 148, 173-178 (2006).
SAS. SAS User's Guide, Version 8.02. SAS Institute. Cary, NC, USA, (2001).
Kunert, G., Reinhold, C., Gershenzon, J. Constitutive emission of the aphid alarm pheromone, (E)-farnesene, from plants does not serve as a direct defense against aphids. BMC Ecology 10, 23 (2010).
Gibson, R. W., Pickett, J. A. Wild potato repels aphids by release of aphid alarm pheromone. Nature 302, 608-609 (1983).
Pickett, J. A., Wadhams, L. J., Woodcock, C. M. The chemical ecology of aphids. Ann. Rev. Entomol. 37, 67-90 (1992).
Fan, J. et al. Orco mediates olfactory behaviors and winged morph differentiation induced by alarm pheromone in the grain aphid, Sitobion avenae. Insect Biochemistry and Molecular Biology. 16-24 (2015).
Jiang, S. S., Deng, Q., Fan, J., Sun, J. R., Chen, J. L. Behavioral responses of Sitobion avenae (Hemiptera: Aphididae) to E-farnesene. Acta Entomologica Sinica 58, 776-782 (2015).
Hatano, E., Kunert, G., Weisser, W. W. Aphid wing induction and ecological costs of alarm pheromone emission under field conditions. Plos One 5, e11188 (2010).
Kunert, G., Otto, S., Röse, U. S., Gershenzon, J., Weisser, W. W. Alarm pheromone mediates production of winged dispersal morphs in aphids. Ecology Letters 8, 596-603 (2005).
Verheggen, F. J., Haubruge, E., Mescher, M. C. Chapter Nine-Alarm Pheromones-Chemical Signaling in Response to Danger. Vol. Volume 83 (Academic Press, 2010).
Shiojiri, K. et al. Herbivore-Specific, Density-Dependent Induction of Plant Volatiles: Honest or "Cry Wolf " Signals PLoS ONE 5, e12161 (2010).
Pickett, J. A., Glinwood, R. In Aphids as crop pests (eds Van Emden, H. F., Harrington, R.) 235-260 (CABI, 2007).
Quiroz, A., Niemeyer, H. M. Olfactometer-assessed responses of aphid Rhopalosiphum padi to wheat and oat volatiles. J Chem Ecol 24, 113-124 (1998).
Cook, S. M., Khan, Z. R., Pickett, J. A. The use of push-pull strategies in integrated pest management. Annu Rev Entomol. 375-400 (2007).
James, D. G. Synthetic Herbivore-Induced Plant Volatiles as Field Attractants for Beneficial Insects. Environ Entomol 32, 977-982 (2003).
Sabelis, M. W. et al. Behavioural responses of predatory and herbivorous arthropods to induced plant volatiles: from evolutionary ecology to agricultural applications. (APS Press, 1999).