[en] We investigate the extent to which the recently upgraded version of the Ssalto/Duacs sea level anomaly product affects the description of mesoscale activity in the Eastern Boundary Upwelling Systems (EBUS). Drifter observations confirm that the new data set released by Archiving, Validation and Interpretation of Satellite Oceanographic data (AVISO) in April 2014 (DT14) offers an enhanced description of mesoscale activity for the four EBUS. DT14 returns significantly higher eddy kinetic energy levels (+80%) within a 300 km coastal band, where mesoscale structures are known to induce important lateral physical and biogeochemical fluxes. When applied to DT14, an automatic eddy detection algorithm detects more eddies in the EBUS (+37%), and lower eddy radius estimates, in comparison with results using the former altimetry product (DT10). We show that despite higher eddy densities, the smaller eddy radii result in westward eddy transport estimates that are smaller than those obtained from DT10 ( −12%).
Disciplines :
Earth sciences & physical geography
Author, co-author :
Capet, Arthur ; Université de Liège > Département de Biologie, Ecologie et Evolution > MAST (Modeling for Aquatic Systems)
Mason, Evan; Mediterranean Institute for Advanced Studies (IMEDEA) > Department of Marine Technologies, Operational Oceanography and Sustainability
Rossi, Vincent; University of the Balearic Islands > Institute for Cross-Disciplinary Physics and Complex Systems (IFISC)
Troupin, Charles; Balearic Islands Coastal Observing and Forecasting System
Arbic, B. K., R. B. Scott, D. B. Chelton, J. G. Richman, and, J. F. Shriver, (2012), Effects of stencil width on surface ocean geostrophic velocity and vorticity estimation from gridded satellite altimeter data, J. Geophys. Res., 117, C03029, doi: 10.1029/2011JC007367.
Bouffard, J., F. Nencioli, R. Escudier, A. M. Doglioli, A. A. Petrenko, A. Pascual, P.-M. Poulain, and, D. Elhmaidi, (2014), Lagrangian analysis of satellite-derived currents: Application to the North Western Mediterranean coastal dynamics, Adv. Space Res., 53 (5), 788-801.
Capet, X., F. Colas, J. C. McWilliams, P. Penven, and, P. Marchesiello, (2008), Eddies in eastern boundary subtropical upwelling systems, in Ocean Modeling in an Eddying Regime, in Ocean Modeling in an Eddying Regime, Geophys. Monogr. Ser., vol. 177, edited by, M. W. Hecht, and, H. Hasumi, pp. 131-147, doi: 10.1029/177GM10
Chaigneau, A., M. Le Texier, G. Eldin, C. Grados, and, O. Pizarro, (2011), Vertical structure of mesoscale eddies in the eastern South Pacific Ocean: A composite analysis from altimetry and Argo profiling floats, J. Geophys. Res., 116, C11025, doi: 10.1029/2011JC007134.
Chavez, F. P., and, M. Messié, (2009), A comparison of eastern boundary upwelling ecosystems, Prog. Oceanogr., 83 (1), 80-96.
Chelton, D. B., M. G. Schlax, and, R. M. Samelson, (2011), Global observations of nonlinear mesoscale eddies, Prog. Oceanogr., 91 (2), 167-216.
Combes, V., F. Chenillat, E. Di Lorenzo, P. Rivière, M. Ohman, and, S. Bograd, (2013), Cross-shore transport variability in the California Current: Ekman upwelling vs. eddy dynamics, Prog. Oceanogr., 109, 78-89.
Danabasoglu, G., et al. (1994), The role of mesoscale tracer transports in the global ocean circulation, Science, 264 (5162), 1123-1125.
Dencausse, G., M. Arhan, and, S. Speich, (2010), Routes of Agulhas rings in the southeastern Cape Basin, Deep Sea Res., Part I, 57 (11), 1406-1421.
Dong, C., J. C. McWilliams, Y. Liu, and, D. Chen, (2014), Global heat and salt transports by eddy movement, Nat. Commun., 5, doi: 10.1038/ncomms4294.
Duacs/AVISO (2014), A new version of SSALTO/Duacs products available in April 2014. Version 1.1, CNES. [Available at http://www.aviso.altimetry.fr/fileadmin/documents/data/duacs/Duacs2014.pdf.]
Ducet, N., P.-Y. Le Traon, and, G. Reverdin, (2000), Global high-resolution mapping of ocean circulation from TOPEX/Poseidon and ERS-1 and-2, J. Geophys. Res., 105 (C8), 19,477-19,498.
Durand, M., L.-L. Fu, D. P. Lettenmaier, D. E. Alsdorf, E. Rodriguez, and, D. Esteban-Fernandez, (2010), The surface water and ocean topography mission: Observing terrestrial surface water and oceanic submesoscale eddies, Proc. IEEE, 98 (5), 766-779.
Early, J. J., R. Samelson, and, D. B. Chelton, (2011), The evolution and propagation of quasigeostrophic ocean eddies, J. Phys. Oceanogr., 41 (8), 1535-1555.
Escudier, R., J. Bouffard, A. Pascual, P.-M. Poulain, and, M.-I. Pujol, (2013), Improvement of coastal and mesoscale observation from space: Application to the northwestern Mediterranean Sea, Geophys. Res. Lett., 40, 2148-2153, doi: 10.1002/grl.50324.
Flierl, G. R., (1981), Particle motions in large-amplitude wave fields, Geophys. Astrophys. Fluid, 18 (1-2), 39-74.
Fu, L.-L., and, C. Ubelmann, (2014), On the transition from profile altimeter to swath altimeter for observing global ocean surface topography, J. Atmos. Oceanic Technol., 31 (2), 560-568.
Gaube, P., D. Chelton, P. Strutton, and, M. J. Behrenfeld, (2013), Satellite observations of chlorophyll, phytoplankton biomass, and Ekman pumping in nonlinear mesoscale eddies, J. Geophys. Res. Oceans, 118, 6349-6370, doi: 10.1002/2013JC009027.
Gruber, N., Z. Lachkar, H. Frenzel, P. Marchesiello, M. Münnich, J. C. McWilliams, T. Nagai, and, G.-K. Plattner, (2011), Eddy-induced reduction of biological production in eastern boundary upwelling systems, Nat. Geosci., 4 (11), 787-792.
Hernández-Carrasco, I., V. Rossi, E. Hernández-García, V. Garçon, and, C. Lõpez, (2014), The reduction of plankton biomass induced by mesoscale stirring: A modeling study in the Benguela upwelling, Deep Sea Res., Part I, 83, 65-80.
Keating, S. R., A. J. Majda, and, K. S. Smith, (2012), New methods for estimating ocean eddy heat transport using satellite altimetry, Mon. Weather Rev., 140 (5), 1703-1722.
Lachkar, Z., and, N. Gruber, (2012), A comparative study of biological production in eastern boundary upwelling systems using an artificial neural network, Biogeosciences, 9, 293-308.
Le Traon, P. Y., and, G. Dibarboure, (1999), Mesoscale mapping capabilities of multiple-satellite altimeter missions, J. Atmos. Oceanic Technol., 16 (9), 1208-1223.
Lee, M.-M., and, R. G. Williams, (2000), The role of eddies in the isopycnic transfer of nutrients and their impact on biological production, J. Mar. Res., 58 (6), 895-917.
Marchesiello, P., and, P. Estrade, (2009), Eddy activity and mixing in upwelling systems: A comparative study of Northwest Africa and California regions, Int. J. Earth Sci., 98 (2), 299-308.
Mason, E., A. Pascual, and, J. C. McWilliams, (2014), A new sea surface height-based code for oceanic mesoscale eddy tracking, J. Atmos. Oceanic Technol., 31 (5), 1181-1188.
McWilliams, J. C., (1985), Submesoscale, coherent vortices in the ocean, Rev. Geophys., 23 (2), 165-182, doi: 10.1029/RG023i002p00165.
Oschlies, A., and, V. Garçon, (1998), Eddy-induced enhancement of primary production in a model of the North Atlantic Ocean, Nature, 394 (6690), 266-269.
Pascual, A., Y. Faugère, G. Larnicol, and, P.-Y. Le Traon, (2006), Improved description of the ocean mesoscale variability by combining four satellite altimeters, Geophys. Res. Lett., 33, L02611, doi: 10.1029/2005GL024633.
Pauly, D., and, V. Christensen, (1995), Primary production required to sustain global fisheries, Nature, 374 (6519), 255-257.
Petersen, M. R., S. J. Williams, M. E. Maltrud, M. W. Hecht, and, B. Hamann, (2013), A three-dimensional eddy census of a high-resolution global ocean simulation, J. Geophys. Res. Oceans, 118, 1759-1774, doi: 10.1002/jgrc.20155.
Rio, M.-H., (2012), Use of altimeter and wind data to detect the anomalous loss of SVP-type drifter's drogue, J. Atmos. Oceanic Technol., 29 (11), 1663-1674.
Rio, M.-H., and, F. Hernandez, (2003), High-frequency response of wind-driven currents measured by drifting buoys and altimetry over the world ocean, J. Geophys. Res., 108 (C8), 3283, doi: 10.1029/2002JC001655.
Rio, M.-H., S. Guinehut, and, G. Larnicol, (2011), New CNES-CLS09 global mean dynamic topography computed from the combination of GRACE data, altimetry, and in situ measurements, J. Geophys. Res., 116, C07018, doi: 10.1029/2010JC006505.
Rossi, V., C. Lõpez, J. Sudre, E. Hernández-García, and, V. Garçon, (2008), Comparative study of mixing and biological activity of the Benguela and Canary upwelling systems, Geophys. Res. Lett., 35, L11602, doi: 10.1029/2008GL033610.
Rossi, V., C. Lõpez, E. Hernández-García, J. Sudre, V. Garçon, and, Y. Morel, (2009), Surface mixing and biological activity in the four Eastern Boundary Upwelling Systems, Nonlinear Processes Geophys., 16, 557-568.
Sangrà, P., et al. (2009), The Canary Eddy Corridor: A major pathway for long-lived eddies in the subtropical North Atlantic, Deep Sea Res. Part I, 56 (12), 2100-2114.
Stammer, D., (1997), Global characteristics of ocean variability estimated from regional TOPEX/POSEIDON altimeter measurements, J. Phys. Oceanogr., 27 (8), 1743-1769.
Taylor, K. E., (2001), Summarizing multiple aspects of model performance in a single diagram, J. Geophys. Res., 106 (D7), 7183-7192, doi: 10.1029/2000JD900719.
Williams, R. G., and, M. J. Follows, (1998), The Ekman transfer of nutrients and maintenance of new production over the North Atlantic, Deep Sea Res. Part I, 45 (2), 461-489.
Zhang, Z., Y. Zhang, W. Wang, and, R. X. Huang, (2013), Universal structure of mesoscale eddies in the ocean, Geophys. Res. Lett., 40, 3677-3681, doi: 10.1002/grl.50736.
Zhang, Z., W. Wang, and, B. Qiu, (2014), Oceanic mass transport by mesoscale eddies, Science, 345 (6194), 322-324.