[en] Aphids cause serious damages to crops not only by tacking sap but also by transmitting numerous viruses. To develop biological control, the aphid alarm pheromone, namely E-β-farnesene (EβF), has been demonstrated to be efficient to repel aphids and as attract beneficials, making it a potential tool to control aphid pests. Considering aphids also as virus vectors, changes of their behaviour could also interfere with the virus acquisition and transmission process. Here, a combination of two aphid species and two potato virus models were selected to test the influence of EβF release on aphid and virus dispersion under laboratory conditions. EβF release was found to significantly decrease the population of M. persicae and M. euphorbiae around the infochemical releaser but simultaneously also increasing the dispersal of Potato Virus Y (PVY). At the opposite, no significant difference for Potato Leaf Roll Virus (PLRV) transmission efficiency was observed with similar aphid alarm pheromone releases for none of the aphid species. These results provide some support to carefully consider infochemical releasers not only for push – pull strategy and pest control but also to include viral disease in a the plant protection to aphids as they are also efficient virus vectors. Impact of aphid kinds and transmission mechanisms will be discussed according to the large variation found between persistent and non persistent potato viruses and interactions with aphids and related infochemicals.
Disciplines :
Entomologie & lutte antiravageur
Auteur, co-auteur :
Lin, Fang-Jing
Bosquée, Emilie ; Université de Liège > Agronomie, Bio-ingénierie et Chimie (AgroBioChem) > Entomologie fonctionnelle et évolutive
Liu, Ying-Jie
Chen, Ju-Lian
Liu, Yong
Francis, Frédéric ; Université de Liège > Agronomie, Bio-ingénierie et Chimie (AgroBioChem) > Entomologie fonctionnelle et évolutive
Langue du document :
Anglais
Titre :
Impact of aphid alarm pheromone release on virus transmission efficiency: when pest control strategy could induce higher virus dispersion
Blackman R.L., Eastop V.F. Taxonomic issues. Aphids as Crop Pests 2007, 1-22. CABI. H.F. Van Emden, R. Harrington (Eds.).
Boiteau G. Comparative propensity for dispersal of apterous and alate morphs of three potato-colonizing aphid species. Can. J. Zool. 1997, 75:1396-1403.
Bosque-Pérez N.A., Eigenbrode S.D. The influence of virus-induced changes in plants on aphid vectors: insights from luteovirus pathosystems. Virus Res. 2011, 159:201-205.
Bragard C., Caciagli P., Lemaire O., Lopez-Moya J.J., MacFarlane S., Peters D., Torrance L. Status and prospects of plant virus control through interference with vector transmission. Annu. Rev. Phytopathol. 2013, 51:177-201.
Bruce T.J., Birkett M.A., Blande J., Hooper A.M., Martin J.L., Khambay B., Wadhams L.J. Response of economically important aphids to components of Hemizygia petiolata essential oil. Pest Manag. Sci. 2005, 61:1115-1121.
Calabrese E.J., Sorensen A.J. Dispersal and recolonization by Myzus persicae following aphid alarm pheromone exposure. Ann. Entomol. Soc. Am 1978, 71:181-182.
Carmo-Sousa M., Moreno A., Garzo E., Fereres A. A non-persistently transmitted-virus induces a pull-push strategy in its aphid vector to optimize transmission and spread. Virus Res. 2013, 186:38-46.
Cervantes F.A., Alvarez J.M. Within plant distribution of Potato virus Y in hairy nightshade (Solanum sarrachoides): An inoculum source affecting PVY aphid transmission. Virus Res. 2011, 159:194-200.
Christiansen-Weniger P., Powell G., Hardie J. Plant virus and parasitoid interactions in a shared insect vector/host. Entomol. Exp. Appl. 1998, 86:205-213.
Cui L.L., Francis F., Heuskin S., Lognay G., Liu Y.J., Dong J., Liu Y. The functional significance of E-β-Farnesene: does it influence the populations of aphid natural enemies in the fields?. Biol. Control. 2012, 60:108-112.
Cui L.L., Dong J., Francis F., Liu Y.J., Heuskin S., Lognay G., Liu Y. E-β-farnesene synergizes the influence of an insecticide to improve control of cabbage aphids in China. Crop Prot. 2012, 35:91-96.
de Vos M., Cheng W.Y., Summers H.E., Raguso R.A., Jander G. 2010. Alarm pheromone habituation in Myzus persicae has fitness consequences and causes extensive gene expression changes. P. Natl. Acad. Sci. U. S. A. 2010, 107:14673-14678.
Edwards L.J., Siddall J.B., Dunham L.L., Uden P., Kislow C.J. Trans-β-farnesene alarm pheromone of the green peach aphid, Myzus persicae (Sulzer). Nature 1973, 241:126-127.
Francis F., Vandermoten S., Verheggen F., Lognay G., Haubruge E. Is the (E)-β-farnesene only volatile terpenoid in aphids?. J. Appl. Entomol. 2005, 129:6-11.
Griffiths D.C., Pickett J.A. A potential application of aphid alarm pheromones. Entomol. Exp. Appl. 1980, 27:199-201.
Gut J., Van Oosten A.M., Harrewijn P., Van Rheenen B. Additional function of alarm pheromones in developmental processes of aphids. Agr. Ecosyst. Environ. 1988, 21:125-127.
Hatano E., Kunert G., Bartram S., Boland W., Gershenzon J., Weisser W.W. Do aphid colonies amplify their emission of alarm pheromone?. J. Chem. Ecol. 2008, 34:1149-1152.
Hatano E., Kunert G., Weisser W.W. Aphid wing induction and ecological costs of alarm pheromone emission under field conditions. PLosS One 2010, 5:e11188. 10.1371/journal.pone.0011188.
Herrbach E. Alarm pheromones and allelochemics as a means of aphid control. Neth. J. Pl. Path. 1992, 98:63-71.
Heuskin S., Godin B., Leroy P., Capella Q., Wathelet J.P., Verheggen F., Haubruge E., Lognay G. Fast gas chromatography characterisation of purified semiochemicals from essential oils of Matricaria chamomilla L. (Asteraceae) and Nepeta Cataria L. (Lamiaceae). J. Chromatogr. A 2009, 1216:2768-2775.
Heuskin S., Rozet E., Lorge S., Farmakidis J., Hubert P., Verheggen F., Haubruge E., Wathelet J.P., Lognay G. Validation of a fast gas chromatographic method for the study of semiochemical slow release formulations. J. Pharmaceut. Biomed. 2010, 53:962-972.
Heuskin S., Lorge S., Godin B., Leroy P., Frère I., Verheggen F.J., Lognay G. Optimisation of a semiochemical slow-release alginate formulation attractive towards Aphidius ervi Haliday parasitoids. Pest Manag. Sci. 2012, 68:127-136.
Hodge S., Hardie J., Powell G. Parasitoids aid dispersal of a no persistently transmitted plant virus by disturbing the aphid vector. Agr. Forest. Entomol. 2011, 13:83-88.
Ingwell L.L., Eigenbrode S.D., Bosque-Pérez N.A. Plant viruses alter insect behaviour to enhance their spread. Sci. Rep. 2012, 2:1-6.
Joachim C., Weisser W.W. Real-Time monitoring of (E)-β-Farnesene emission in colonies of the Pea Aphid, Acyrthosiphon pisum, under lacewing and ladybird predation. J. Chem. Ecol. 2013, 39:1254-1262.
Kaliciak A., Syller J. Aphid transmissibility of genetically different isolates of Potato virus Y and susceptibility of weeds to virus infection. Biuletyn IHAR 2009, 253:285-295.
Kindlmann P., Dixon A.F.G. Population dynamics of a tree-dwelling aphid: individuals to populations. Ecol. Model. 1996, 89:23-30.
Kunert G., Reinhold C., Gershenzon J. Constitutive emission of the aphid alarm pheromone, (E)-β-farnesene, from plants does not serve as a direct defense against aphids. BMC Ecol. 2010, 10:23.
Lambers D.H.R., Schepers A. 'The effect of trans-β-farnesene used as a repellant against landing aphid alatae in seed potato growing. Potato Res. 1978, 21:23-26.
Mashanova A., Gange A.C., Jansen V.A. Density-dependent dispersal may explain the mid-season crash in some aphid populations. Popul. Ecol. 2008, 50:285-292.
Mauck K.E., De Moraes C.M., Mescher M.C. Deceptive chemical signals induced by a plant virus attract insect vectors to inferior hosts. Proc. Natl. Acad. Sci. U. S. A. 2010, 107:3600-3605.
Mauck K.E., De Moraes C.M., Mescher M.C. Biochemical and physiological mechanisms underlying effects of Cucumber mosaic virus on host-plant traits that mediate transmission by aphid vectors. Plant Cell Environ. 2014, 10.1111/pce.12249.
Montgomery M.E., Nault L.R. Comparative response of aphids to the alarm pheromone, (E)-β-farnesene. Entomol. Exp. Appl. 1977, 22:236-242.
Narayandas G.K., Alyokhin A.V. Interplant movement of potato aphid (Homoptera: aphididae) in response to environmental stimuli. Environ. Entomol. 2006, 35:733-739.
Radcliffe E.B., Ragsdale D.W. Aphid-transmitted potato viruses: the importance of understanding vector biology. Am. J. Potato Res. 2002, 79:353-386.
Ragsdale D.W., Radcliffe E.B., Difonzo C.D. Epidemiology and field control of PVY and PLRV. Virus and Virus-like Diseases of Potatoes and Production of Seed-potatoes 2001, 237-270. Springer, Netherlands. G. Loebenstein, P.H. Berger, A.A. Brunt, R.H. Lawson (Eds.).
Rajabaskar D., Bosque-Pérez N.A., Eigenbrode S.D. Preference by a virus vector for infected plants is reversed after virus acquisition. Virus Res. 2013, 186:32-37.
Rajabaskar D., Ding H., Wu Y., Eigenbrode S.D. Different reactions of potato varieties to infection by Potato leafroll virus, and associated responses by its vector, Myzus persicae (Sulzer). Chem. Ecol. 2013, 39:1027-1035.
Rice A.D., Devonshire A.L., Gibson R.W., Gooding A.R., Moores G.D., Stribley M.F. The problem of aphid resistance to aphicides, and alternative chemical methods of preventing virus transmission. Proceedings 48th Winter Congress. International Institute for Sugar Beet Research 1985, 209-228.
Schwartzberg E.G., Kunert G., Roese U.S.R., Gershenzon J., Weisser W.W. Alarm pheromone emission by pea aphid Acyrthosiphon pisum, clones under predation by lacewing larvae. Entomol. Exp. Appl. 2008, 128:403-409.
Su J., Zhu S., Zhang Z., Ge F. Effect of synthetic aphid alarm pheromone (E)-β-Farnesene on development and reproduction of Aphis gossypii (Homoptera: aphididae). J. Econ. Entomol. 2006, 99:1636-1640.
Sun Y.C., Su J.W., Ge F. Elevated CO2 reduces the response of Sitobion avenae (Homoptera: aphidiidae) to alarm pheromone. Agr. Ecosyst. Environ. 2010, 135:140-147.
Ummad ud Din U. Evaluation of Multiple Regression Models Based on Epidemiological Factors to Predict Potato Leaf Roll Virus Disease Incidence and Its Management, Doctoral Dissertation 2011, University of Agriculture, Faisalabad.
Vandermoten S., Mescher M.C., Francis F., Haubruge E., Verheggen F.J. Aphid alarm pheromone: an overview of current knowledge on biosynthesis and functions. Insect Biochem. Mol. 2012, 42:155-163.
Verheggen F.J., Mescher M.C., Haubruge E., Moraes C.M., Schwartzberg E.G. Emission of alarm pheromone in aphids: a non-contagious phenomenon. J. Chem. Ecol. 2008, 34:1146-1148.
Vučetić A., Jovičić I., Petrović-Obradović O. The pressure of Aphids (Aphididae Hemiptera), vectors of potato viruses. Arch. Biol. Sci. 2013, 65:659-666.
Wohlers, P., Wiedemann, H.L., 1986. Alarm pheromone of aphids - a way of preventing virus transmission? Mitteilungen aus der Biologischen Bundesanstalt fuer Land-und Forstwirtschaft Berlin-Dahlem.
Xiangyu J.G., Zhang F., Fang Y.L., Kann W., Zhang G.X., Zhang Z.N. Behavioural response of aphids to the alarm pheromone component (E)-β-farnesene in the field. Physiol. Entomol. 2002, 27:307-311.
Yang S.L., Zettler F.W. Effects of alarm pheromones on aphid probing behaviour and virus transmission efficiency. Plant Dis. Rep. 1975, 59:902-905.