[en] Introduction: Several methods exist to identify population substructure that is due to shared genetic ancestry or regional proximity. These may be SNP-based or haplotype-based (Price et al. 2006, Lawson et al. 2012). Here, we present a flexible unsupervised clustering approach that is built on the ipPCA machinery (Intarapanich et al. 2009).
Methods: Our method supports both numeric and categorical data, and can be applied to panels of SNPs and/or haplotypes, or gene-based integrative summaries (Fouladi et al. 2015). Unlike ipPCA, our method involves an iterative process using binary and ternary splits based on multivariate Gaussian mixture modeling of PCs and Clustering EM (CEM) estimation as in (Lebret et al. 2015). To assess performance, we considered different simulated scenarios of FST=[0.0005,0.006], 5,000-20,000 independent SNPs in HWE, 500-8,000 individuals, and 2-4 populations (Balding and Nichols 1995), with 100 replicates for each scenario. SNPs were treated as categorical or continuous (including ancestry-corrected SNPs). Haplotype-based runs used HapMap 3 data: CHB-JPT (FST=0.007) and CEU-TSI (FST=0.004).
Result and Conclusion: In simulated scenarios of extremely subtle structure (FST=[0.0009,0.002]), a population classification accuracy of 92.56% or greater was obtained, which was superior to ipPCA. Promising results to detect fine structure were also obtained in case of the HapMap populations. We believe that the ability of our approach to detect subtle structure, including outlier individuals, will be important in molecular reclassification studies of patients from whom underlying population patterns have been removed.
Grants: KC and KVS acknowledge FNRS, AS acknowledges ANR, ST acknowledges NSTDA, and PJS acknowledges TRF.
Disciplines :
Life sciences: Multidisciplinary, general & others
Author, co-author :
Chaichoompu, Kridsadakorn ; Université de Liège > Dép. d'électric., électron. et informat. (Inst.Montefiore) > Bioinformatique
Tongsima, Sissades; National Center for Genetic Engineering and Biotechnology (BIOTEC), Thailand > Genome Technology Research Unit > Biostatistics and Bioinformatics Laboratory
Shaw, Philip James; National Center for Genetic Engineering and Biotechnology (BIOTEC), Thailand > Medical Molecular Biology Research Unit > Protein-Ligand Engineering and Molecular Biology Laboratory
Sakuntabhai, Anavaj; Institut Pasteur, France > Functional Genetics of Infectious Diseases Unit
Van Steen, Kristel ; Université de Liège > Dép. d'électric., électron. et informat. (Inst.Montefiore) > Bioinformatique
Language :
English
Title :
A novel unsupervised clustering approach with multiple data types to reveal fine-level structure
Publication date :
21 May 2016
Event name :
the European Human Genetics Conference 2016 (ESHG 2016), Barcelona
This website uses cookies to improve user experience. Read more
Save & Close
Accept all
Decline all
Show detailsHide details
Cookie declaration
About cookies
Strictly necessary
Performance
Strictly necessary cookies allow core website functionality such as user login and account management. The website cannot be used properly without strictly necessary cookies.
This cookie is used by Cookie-Script.com service to remember visitor cookie consent preferences. It is necessary for Cookie-Script.com cookie banner to work properly.
Performance cookies are used to see how visitors use the website, eg. analytics cookies. Those cookies cannot be used to directly identify a certain visitor.
Used to store the attribution information, the referrer initially used to visit the website
Cookies are small text files that are placed on your computer by websites that you visit. Websites use cookies to help users navigate efficiently and perform certain functions. Cookies that are required for the website to operate properly are allowed to be set without your permission. All other cookies need to be approved before they can be set in the browser.
You can change your consent to cookie usage at any time on our Privacy Policy page.