Poster (Scientific congresses and symposiums)
Combining genotype with allelic association as input for iterative pruning principal component analysis (ipPCA) to resolve population substructures
Chaichoompu, Kridsadakorn; Fouladi, Ramouna; Wangkumhang, Pongsakorn et al.
2014The 23rd annual conference of the International Genetic Epidemiology Society (IGES 2014)
 

Files


Full Text
poster_iges_20_08_2014.pdf
Author preprint (9.5 MB)
Request a copy

All documents in ORBi are protected by a user license.

Send to



Details



Abstract :
[en] Single Nucleotide Polymorphisms (SNPs) are commonly used to capture variations between populations and often genome-wide SNP data are pruned based on linkage disequilibrium (LD) patterns. Notably, haplotype composition and the pattern of LD between markers may vary between larger populations but may also play a role within more confined geographic regions. Indeed, knowledge about haplotypes in unrelated individuals can reveal useful information about genetic ancestry. Here, we use iterative pruning principal component analysis (ipPCA) [Intarapanich 2009] to identify and characterize subpopulations in an unsupervised way using a rich set of genetic markers since using reduced sets of genetic markers for these purposes can become challenging, especially when similar geographic regions are involved or when spurious patterns are likely to exist. As input data, either pruned genome-wide SNP data are used or multilocus haplotype information derived from the genome-wide SNP panel. These approaches are applied to real-life data from 4028 Vietnamese individuals [Khor 2012]. Preliminary results indicate that ipPCA applied to pruned SNP data or ipPCA that explicitly uses multilocus information (haplotypes) give complementary information about population substructure for geographically confined populations. Both methods address different aspects of population structure. In conclusion, we propose to combine an LD-based haplotype encoding scheme with the ipPCA machinery to retrieve fine population substructures. Despite the complexities that are associated with haplotype inference, added value can be obtained when the LD structure between SNPs is exploited in the search for relevant population strata.
Disciplines :
Life sciences: Multidisciplinary, general & others
Author, co-author :
Chaichoompu, Kridsadakorn ;  Université de Liège > Dép. d'électric., électron. et informat. (Inst.Montefiore) > Bioinformatique
Fouladi, Ramouna ;  Université de Liège > Dép. d'électric., électron. et informat. (Inst.Montefiore) > Bioinformatique
Wangkumhang, Pongsakorn;  National Center for Genetic Engineering and Biotechnology, Thailand > Genome Institute > Biostatistics and informatics Laboratory
Wilantho, Alisa;  National Center for Genetic Engineering and Biotechnology, Thailand > Genome Institute > Biostatistics and informatics Laboratory
Chareanchim, Wanwisa;  National Center for Genetic Engineering and Biotechnology, Thailand > Genome Institute > Biostatistics and informatics Laboratory
Tongsima, Sissades;  National Center for Genetic Engineering and Biotechnology, Thailand > Genome Institute > Biostatistics and informatics Laboratory
Sakuntabhai, Anavaj;  Institut Pasteur, France > Functional Genetics of Infectious Diseases Unit
Van Steen, Kristel  ;  Université de Liège > Dép. d'électric., électron. et informat. (Inst.Montefiore) > Bioinformatique
Language :
English
Title :
Combining genotype with allelic association as input for iterative pruning principal component analysis (ipPCA) to resolve population substructures
Publication date :
28 August 2014
Event name :
The 23rd annual conference of the International Genetic Epidemiology Society (IGES 2014)
Event place :
Vienna, Austria
Event date :
28-30 August 2014
Audience :
International
Name of the research project :
Foresting in Integromics Inference
Funders :
F.R.S.-FNRS - Fonds de la Recherche Scientifique
Available on ORBi :
since 20 July 2016

Statistics


Number of views
78 (5 by ULiège)
Number of downloads
1 (0 by ULiège)

Bibliography


Similar publications



Contact ORBi