Squeeze film; rigid contact model; automotive differential; dynamic multibody system
Abstract :
[en] The dynamic behaviour of automotive drivetrains is significantly influenced by contacts occurring between the various parts. In this paper, a three-dimensional formulation is proposed to model unilateral and frictional contact conditions between two rigid planar rings. The magnitude of the contact force is determined by a penalty method. In a second step, a simple squeeze film model is developed to account for the damping effect produced by the lubricating oil filling the gap between the two contacting bodies. The relevance and the accuracy of these models are illustrated through the global multibody modelling of a TORSEN differential.
Disciplines :
Mechanical engineering
Author, co-author :
Virlez, Geoffrey; Université de Liège - ULiège > Aérospatiale et Mécanique
Bruls, Olivier ; Université de Liège > Département d'aérospatiale et mécanique > Laboratoire des Systèmes Multicorps et Mécatroniques
Duysinx, Pierre ; Université de Liège > Département d'aérospatiale et mécanique > Ingénierie des véhicules terrestres
Géradin, Michel ; Université de Liège > Département d'aérospatiale et mécanique > Département d'aérospatiale et mécanique
Cardona, Alberto; Universidad Nacional del Litoral - CONICET > CIMEC
Language :
English
Title :
Unilateral contact condition enhanced with squeeze film modelling in automotive differentials
Publication date :
2016
Journal title :
Proceedings of the Institution of Mechanical Engineers. Part C, Journal of Mechanical Engineering Science
Ma ZD, Perkins N,. An efficient multibody dynamics model for internal combustion engine systems. Multibody Syst Dyn 2003; 10: 363-391.
Blundell M, Harty D,. The multibody systems approach to vehicle dynamics, Oxford: Elsevier Butterworth-Heinemann Publications, 2004.
Ziegler P, Eberhard P,. Simulation of gear hammering with a fully elastic model. Non-smooth problems in vehicle systems dynamics, Berlin Heidelberg: Springer, 2010, pp. 195-207.
LMS SAMTECH SAMCEF MECANO. V16-user's and installation manual. A SIEMENS business, www.plm.automation.siemens.com/fr-be/products/lms/samtech/samcef-solver-suite/index.shtml, (2014, accessed 27 February 2016).
Flores P and Lankarani H. Spatial rigid-multibody systems with lubricated spherical clearance joints: modeling and simulation. Nonlinear Dynam 2010; 60: 99-114, http://dx.doi.org/10.1007/s11071-009-9583-z. (accessed 27 February 2016).
Blockmans B, Tamarozzi T, Naets F, et al. A nonlinear parametric model reduction method for efficient gear contact simulations. Int J Numer Meth Eng 2015; 102: 1162-1191.
Géradin M, Cardona A,. Flexible multibody dynamics: a finite element approach, New York, NY: John Wiley & Sons, 2001.
Chung J, Hulbert G,. A time integration algorithm for structural dynamics with improved numerical dissipation: the generalized- α method. ASME J Appl Mech 1993; 60: 371-375.
Arnold M, Brüls O,. Convergence of the generalized- α scheme for constrained mechanical systems. Multibody Syst Dyn 2007; 18: 185-202.
Cardona A,. Three-dimensional gears modelling in multibody systems analysis. Int J Numer Meth Eng 1997; 40: 357-381.
Jetteur P. Contact between flexible bodies in nonlinear analysis, using Lagrange multipliers. In: International conference on engineering computational technology, Vol VII, Leuven, Belgium, 6 September 2000, pp. 257-261. Edinburgh: Civil-Comp Press, ROYAUME-UNI.
Virlez G, Brüls O, Poulet N et al. Simulation of differentials in four-wheel drive vehicles using multibody dynamics. In: Proceedings of the ASME 2011 international design engineering technical conferences computers and information in engineering conference IDETC/CIE 2011, 29-31August, 2011, Washington, DC, USA.
Virlez G, Brüls O, Poulet N, et al. Modelling of contact between stiff bodies in automotive transmission systems. In: Jean-Claude S and Paul F (eds) Computational methods in applied sciences, volume Multibody dynamics: computational methods and applications. Springer, 2013, pp.193-214. Netherlands: Springer.
Virlez G. Multibody modelling of mechanical transmission systems in vehicle dynamics. PhD Thesis, University of Liège, Belgium, 2014.
Lankarani H. Canonical equations of motion and estimation of parameters in the analysis of impact problems. PhD Thesis, University of Arizona, USA, 1988.
Lankarani H, Nikravesh P,. Continuous contact force models for impact analysis in multibody analysis. Nonlinear Dyn 1994; 5: 193-207.
Flores P, Machado M, Silva M, et al. On the continuous contact force models for soft materials in multibody dynamics. Multibody Syst Dyn 2011; 25: 357-375.
Brunetire N, Tournerie B,. Numerical analysis of a surface-textured mechanical seal operating in mixed lubrication regime. Tribol Int 2012; 49: 80-89. www.sciencedirect.com/science/article/pii/S0301679X12000059 (accessed 27 February 2016).
Yang B, Laursen TA,. A mortar-finite element approach to lubricated contact problems. Comput Meth Appl Mech Eng 2009; 198: 3656-3669. www.sciencedirect.com/science/article/pii/S0045782509002321 (accessed 27 February 2016).
Khonsari M,. On the modeling of multi-body interaction problems in tribology. Wear 1997; 207 (12): 55-62. www.sciencedirect.com/science/article/pii/S0043164896074832 (accessed 27 February 2016).
Karagiannis I, Theodossiades S, Rahnejat H,. On the dynamics of lubricated hypoid gears. MechMach Theory 2012; 48: 94-120.
Tian Q, Liu C, Machado M, et al. A new model for dry and lubricated cylindrical joints with clearance in spatial flexible multibody systems. Nonlinear Dyn 2011; 64: 25-47.
Bakker E, Pacejka HB and Lidner L. A new tire model with an application in vehicle dynamics studies. SAE Technical Paper 890087, 1989.