electro-mechanical coupling; monolithic schemes; finite element method; micro-electromechanical systems
Abstract :
[en] The purpose of the present work is to model and to simulate the Coupling between the electric and mechanical fields. A new finite element approach is proposed to model strong electro-mechanical coupling in micro-structures with capacitive effect. The proposed approach is based oil it monolithic formulation: the electric and the mechanical fields are solved simultaneously in the same formulation. This method provides a tangent stiffness matrix for the total coupled problem which allows to determine accurately the pull-in voltage and the natural frequency of electro-mechanical systems such as MEMs. To illustrate the methodology results are Shown For the analysis of a micro-bridge. Copyright (c) 2005 John Wiley
Disciplines :
Mathematics Engineering, computing & technology: Multidisciplinary, general & others
Author, co-author :
Rochus, Véronique ; Université de Liège - ULiège > Département d'aérospatiale et mécanique > LTAS - Vibrations et identification des structures
Rixen, D. J.; 2TU-Delft, Faculty of Design, Engineering and Production, Engineering Dynamics, Mekelweg 2, Delft 2628 CD, The Netherlands
Golinval, Jean-Claude ; Université de Liège - ULiège > Département d'aérospatiale et mécanique > LTAS - Vibrations et identification des structures
Language :
English
Title :
Monolithic modelling of electro-mechanical coupling in micro-structures
Publication date :
22 January 2006
Journal title :
International Journal for Numerical Methods in Engineering
Meys B. Modérlisation des champs électromagnétiques aux hyperfréquences par la méthode des éléments finis: application aux problèmes de chauffage diélectrique. Ph.D. Thesis, University of Liège, Belgium, 1999.
Osterberg PM, Senturia SD. M-test: a test chip for MEMs material property measurement using electrostatically actuated test structures. IEEE 1997; 6(2):107-118.
Ikeda T. Fundamentals of Piezoelectricity. Oxford Science Publications: Oxford, 1996.
Piefort V. Finite element modeling of piezoelectric active structures. Ph.D. Thesis, University of Brussels, Belgium, 2001.
Landis CM. Energetically consistent boundary conditions for electromechanical fracture. International Journal of Solids and Structures 2004; 41:6291-6315.
Batoz J-L, Dhatt G. Modélisation des structures par éléments finis. Editions Hermes: Paris, 1990.
Duran E. Electrostatique, Masson et Cie, 1964.
Hammond P. Electromagnetism for Engineers. Pergamon: New York, 1986.
Farhat C, Lesoinne M, Maman N. Mixed explicit/implicit time integration of coupled aeroelastic problems: three-field formulation, geometric conservation and distributed solution. International Journal for Numerical Methods in Fluids 1995; 21:807-835.
Lee WS, Kwon KC, Kim BK, Cho JH, Young SK. Frequency-shifting analysis of electrostatically tunable micro-mechanical actuator. Journal of Modeling and Simulation of Micro-systems 2001; 2(1):83-88.
Training Manual Introduction to ANSYS 5.7 for MEMs (1st edn). ANSYS Release: 5.7, 2001.
Rochus V, Duysinx P, Golinval JC. Finite element analysis of the electro-mechanical coupling in MEMs, ACOMEN. Second International Conference on Advanced Computational Methods in Engineering, 2002.
Rochus V, Rixen D, Golinval JC. Consistent vibration analysis of electrostatically coupled structures: application to microsystems. Tenth International Congress on Sound and Vibration, 2003.
Crisfield MA. Non-Linear Finite Element Analysis of Solids and Structures. Wiley: New York, 1991.
Allik H, Hughes TJR. Finite element method for piezoelectric vibration. International Journal for Numerical Methods in Engineering 1970; 2:151-157.
Pamidighantam S, Puers R, Tilmans HAC. Pull-in voltage analysis of fixed-fixed beams. Proceedings of MMEs 2001 2001; 269-272.
Young WC. Roark's Formulas for Stress and Strain. McGraw-Hill: New York, 1989.
Geradin M, Rixen D. Mechanical Vibrations Theory and Application to Structural Dynamics (2nd edn). Wiley: New York, 1997.
Zienkiewiez OC. The Finite Element Method. Elsevier: Amsterdam, 1977; 272-276.
Rochus V, Rixen D, Golinval JC. Modeling of electro-mechanical coupling problem using the finite element formulation. SPIEs 10th Annual International Symposium on Smart Structures and Materials, 2002.