[en] Diabetes is characterized by the loss of insulin producing beta cells. Although different therapeutic strategies do exist, they lack precise and dynamic control of glycemia as carried out by endogenous beta cells. One promising alternative is to replenish the pancreas with bona fide functional beta cells by triggering regeneration mechanisms. Previous studies have shown beta cell neogenesis but still remain controversial about their origin as they used different models. However, among the different hypotheses, it is tempting to assume that pancreatic ducts contain progenitor/precursor cells in adults. The latter is supported by the fact that the embryonic duct epithelium gives rise to the endocrine lineage, and that in healthy and diabetic human adults, insulin positive cells could be found next to or in pancreatic ducts.
Despite these observations, mammals show very limited regenerative capabilities, making it difficult to investigate those mechanisms. In contrast, zebrafish are extensively used for regeneration studies. The ability of adult zebrafish to regenerate its beta cells and restore normoglycemia after massive beta cell ablation has already been shown. Our work focuses on the understanding of the underlying mechanisms leading to this retained potential. Here we show that adult pancreatic duct cells act as progenitors, giving rise to beta cells, in physiological and induced diabetic condition in vivo. To get insight into this process, we conducted RNA-seq experiments on zebrafish pancreatic duct cells. By this mean we could identify new ductal markers and noticed that adult duct cells also show strong expression of embryonic pancreatic progenitor markers. In our ongoing comparative analyses we are deciphering the key genes and pathways needed to set in motion the regenerative machinery. The differences between zebrafish and mammal duct cells that will thereby be underlined might then be transposed to mammalian model s to restore regenerative processes.
Research Center/Unit :
Zebrafish Development and Disease Models laboratory, Giga-Stem Cells
Disciplines :
Biochemistry, biophysics & molecular biology
Author, co-author :
Bergemann, David ; Université de Liège > Département des sciences de la vie > GIGA-R : Biologie et génétique moléculaire
This website uses cookies to improve user experience. Read more
Save & Close
Accept all
Decline all
Show detailsHide details
Cookie declaration
About cookies
Strictly necessary
Performance
Strictly necessary cookies allow core website functionality such as user login and account management. The website cannot be used properly without strictly necessary cookies.
This cookie is used by Cookie-Script.com service to remember visitor cookie consent preferences. It is necessary for Cookie-Script.com cookie banner to work properly.
Performance cookies are used to see how visitors use the website, eg. analytics cookies. Those cookies cannot be used to directly identify a certain visitor.
Used to store the attribution information, the referrer initially used to visit the website
Cookies are small text files that are placed on your computer by websites that you visit. Websites use cookies to help users navigate efficiently and perform certain functions. Cookies that are required for the website to operate properly are allowed to be set without your permission. All other cookies need to be approved before they can be set in the browser.
You can change your consent to cookie usage at any time on our Privacy Policy page.