Copié depuis Sherpa Romeo (revue ACP) le 11/05/2016 : " * Authors retain copyright
* Creative Commons Attribution License 3.0
* Eligible UK authors may deposit in OpenDepot
* Publisher's version/PDF may be used "
All documents in ORBi are protected by a user license.
[en] Although maize is the second most important crop worldwide, and the most important C4 crop, no study on biogenic volatile organic compounds (BVOCs) has yet been conducted on this crop at ecosystem scale and over a whole growing season. This has led to large uncertainties in cropland BVOC emission estimations. This paper seeks to fill this gap by presenting, for the first time, BVOC fluxes measured in a maize field at ecosystem scale (using the disjunct eddy covariance by mass scanning technique) over a whole growing season in Belgium. The maize field emitted mainly methanol, although exchanges were bi-directional. The second most exchanged compound was acetic acid, which was taken up mainly in the growing season. Bi-directional exchanges of acetaldehyde, acetone and other oxygenated VOCs also occurred, whereas the terpenes, benzene and toluene exchanges were small, albeit significant. Surprisingly, BVOC exchanges were of the same order of magnitude on bare soil and on well developed vegetation, suggesting that soil is a major BVOC reservoir in agricultural ecosystems. Quantitatively, the maize BVOC emissions observed were lower than those reported in other maize, crops and grasses studies. The standard emission factors (SEFs) estimated in this study (231 ± 19 µg m−2 h−1 for methanol, 8 ± 5 µg m−2 h−1 for isoprene and 4 ± 6 µg m−2 h−1 for monoterpenes) were also much lower than those currently used by models for C4 crops, particularly for terpenes. These results suggest that maize fields are small BVOC exchangers in north-western Europe, with a lower BVOC emission impact than that modelled for growing C4 crops in this part of the world. They also reveal the high variability in BVOC exchanges across world regions for maize and suggest that SEFs should be estimated for each region separately. [fr] Bien que le maïs soit la deuxième culture mondiale la plus importante, et la plus importante des cultures en C4, aucune étude de composés organiques volatils d'origine biogénique (COVB) n'a été menée sur cette culture à l'échelle de l'écosystème et durant une saison entière de croissance. Ceci conduit à de grandes incertitudes concernant l'estimation des émissions de COVB par les écosystèmes agricoles. Cet article tente de résoudre cette incertitude en présentant, de manière inédite, des flux de COVB mesurés sur un champ de maïs en Belgique à l'échelle de l'écosystème (grâce à la technique de covariance de turbulence) pendant une saison entière de croissance. Le champ de maïs a principalement émis du méthanol, même si des échanges bidirectionnels ont été observés. Le deuxième composé le plus échangé a été l'acide acétique. Ce dernier a surtout été capturé par l'écosystème durant la saison de végétation. Des échanges bidirectionnels d'acétaldehyde, d'acétone et d'autres COV oxygénés ont également été observés. Les échanges de terpènes, de benzène et de toluène, bien que significatifs, ont été mineurs. Étonnamment, les échanges de COVB étaient de même ordre de grandeur sur sol nu que lorsque la végétation était bien développée, suggérant que le sol était lui aussi un réservoir de COVB majeur au sein des écosystèmes agricoles. Quantitativement, les émissions de COVB observées sur le maïs étaient plus faibles que celles reportées par d'autres études consacrées au maïs ou à d'autres espèces agricoles (incluant les prairies). Les facteurs d'émission standard (SEF) estimés dans cette étude, à savoir 231 ± 19 µg m−2 h−1 pour le méthanol, 8 ± 5 µg m−2 h−1 pour l'isoprène et 4 ± 6 µg m−2 h−1 pour les monoterpènes, étaient également plus faibles que les SEF actuellement utilisés par les modèles pour les cultures en C4. Ces résultats suggèrent que les champs de maïs sont des faibles échangeurs de COVB dans le Nord-Ouest de l'Europe, et que les émissions de COVB des cultures en C4 sont plus faibles que celles estimées par les modèles dans cette région. Ils révèlent également la grande variabilité du maïs entre les différentes régions du monde en termes d'échanges de COVB et suggèrent que les SEF devraient être estimés pour chaque région.
Disciplines :
Agriculture & agronomy
Author, co-author :
Bachy, Aurélie ; Université de Liège > Ingénierie des biosystèmes (Biose) > Echanges Ecosystèmes - Atmosphère
Aubinet, Marc ; Université de Liège > Ingénierie des biosystèmes (Biose) > Echanges Ecosystèmes - Atmosphère
Schoon, Niels; Royal Belgian Institute for Space Aeronomy
Amelynck, Crist; Royal Belgian Institute for Space Aeronomy
Bodson, Bernard ; Université de Liège > Agronomie, Bio-ingénierie et Chimie (AgroBioChem) > Phytotechnie des régions tempérées
Moureaux, Christine ; Université de Liège > Agronomie, Bio-ingénierie et Chimie (AgroBioChem) > Phytotechnie des régions tempérées
Heinesch, Bernard ; Université de Liège > Ingénierie des biosystèmes (Biose) > Echanges Ecosystèmes - Atmosphère
Language :
English
Title :
Are BVOC exchanges in agricultural ecosystems overestimated? Insights from fluxes measured in a maize field over a whole growing season
Alternative titles :
[fr] Les échanges de COVB par les écosystèmes agricoles sont-ils sur-estimés? Suggestions basées sur des mesures de flux sur un champ de maïs pendant une saison entière de croissance
scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.
Bibliography
Ammann, C., Brunner, A., Spirig, C., and Neftel, A. : Technical note: Water vapour concentration and flux measurements with PTR-MS, Atmos. Chem. Phys., 6, 4643-4651, doi:10. 5194/acp-6-4643-2006, 2006.
Aubinet, M., Grelle, A., Ibrom, A., Rannik, U., Moncrieff, J., Foken, T., Kowalski, A. S., Martin, P. H., Berbigier, P., Bernhofer, C., Clement, R., Elbers, J., Granier, A., Grünwald, T., Morgenstern, K., Pilegaard, K., Rebmann, C., Snijders, W., Valentini, R., and Vesala, T. : Estimates of the Annual Net Carbon and Water Exchange of Forests: The EUROFLUX Methodology, Adv. Ecol. Res., 30, 113-175, 1999.
Aubinet, M., Moureaux, C., Bodson, B., Dufranne, D., Heinesch, B., Suleau, M., Vancutsem, F., and Vilret, A. : Carbon sequestration by a crop over a 4-year sugar beet/winter wheat/seed potato/winter wheat rotation cycle, Agr. Forest Meteorol., 149, 407-418, 2009.
Aubinet, M., Vesala, T., and Papale, D. : Eddy covariance a practical guide to measurement and data analysis, Springer, Dordrecht, New York, 2012.
Bamberger, I., Hörtnagl, L., Schnitzhofer, R., Graus, M., Ruuskanen, T. M., Müller, M., Dunkl, J., Wohlfahrt, G., and Hansel, A. : BVOC fluxes above mountain grassland, Biogeosciences, 7, 1413-1424, doi:10. 5194/bg-7-1413-2010, 2010.
Bamberger, I., Hörtnagl, L., Walser, M., Hansel, A., and Wohlfahrt, G. : Gap-filling strategies for annual VOC flux data sets, Biogeosciences, 11, 2429-2442, doi:10. 5194/bg-11-2429-2014, 2014.
Bellarby, J., Wattenbach, M., Tuck, G., Glendining, M. J., and Smith, P. : The potential distribution of bioenergy crops in the UK under present and future climate, Biomass Bioenerg., 34, 1935-1945, 2010.
Copeland, N., Cape, J. N., and Heal, M. R. : Volatile organic compound emissions from Miscanthus and short rotation coppice willow bioenergy crops, Atmos. Environ., 60, 327-335, 2012.
Crespo, E., Graus, M., Gilman, J. B., Lerner, B. M., Fall, R., Harren, F. J. M., and Warneke, C. : Volatile organic compound emissions from elephant grass and bamboo cultivars used as potential bioethanol crop, Atmos. Environ., 65, 61-68, 2013.
Custer, T. And Schade, G. : Methanol and acetaldehyde fluxes over ryegrass, Tellus, Ser. B Chem. Phys. Meteorol., 59, 673-684, 2007.
Das, M., Kang, D., Aneja, V. P., Lonneman, W., Cook, D. R., and Wesely, M. L. : Measurements of hydrocarbon air-surface exchange rates over maize, Atmos. Environ., 37, 2269-2277, 2003.
Eller, A. S. D., Sekimoto, K., Gilman, J. B., Kuster, W. C., de Gouw, J. A., Monson, R. K., Graus, M., Crespo, E., Warneke, C., and Fall, R. : Volatile organic compound emissions from switchgrass cultivars used as biofuel crops, Atmos. Environ., 45, 3333-3337, 2011.
Foken, T. And Wichura, B. : Tools for quality assessment of surfacebased flux measurements, Agr. Forest Meteorol., 78, 83-105, doi:10. 1016/0168-1923(95)02248-1, 1996.
Fowler, D., Pilegaard, K., Sutton, M. A., Ambus, P., Raivonen, M., Duyzer, J., Simpson, D., Fagerli, H., Fuzzi, S., Schjoerring, J. K., Granier, C., Neftel, A., Isaksen, I. S. A., Laj, P., Maione, M., Monks, P. S., Burkhardt, J., Daemmgen, U., Neirynck, J., Personne, E., Wichink-Kruit, R., Butterbach-Bahl, K., Flechard, C., Tuovinen, J. P., Coyle, M., Gerosa, G., Loubet, B., Altimir, N., Gruenhage, L., Ammann, C., Cieslik, S., Paoletti, E., Mikkelsen, T. N., Ro-Poulsen, H., Cellier, P., Cape, J. N., Horváth, L., Loreto, F., Niinemets, U., Palmer, P. I., Rinne, J., Misztal, P., Nemitz, E., Nilsson, D., Pryor, S., Gallagher, M. W., Vesala, T., Skiba, U., Brüggemann, N., Zechmeister-Boltenstern, S., Williams, J., O'Dowd, C., Facchini, M. C., de Leeuw, G., Flossman, A., Chaumerliac, N., and Erisman, J. W. : Atmospheric composition change: Ecosystems-Atmosphere interactions, Atmos. Environ., 43, 5193-5267, 2009.
Fry, M. M., Naik, V., West, J. J., Schwarzkopf, M. D., Fiore, A. M., Collins, W. J., Dentener, F. J., Shindell, D. T., Atherton, C., Bergmann, D., Duncan, B. N., Hess, P., MacKenzie, I. A., Marmer, E., Schultz, M. G., Szopa, S., Wild, O., and Zeng, G. : The influence of ozone precursor emissions from four world regions on tropospheric composition and radiative climate forcing, J. Geophys. Res. Atmos., 117, D07306, doi:10. 1029/2011JD017134, 2012.
Graus, M., Eller, A. S. D., Fall, R., Yuan, B., Qian, Y., Westra, P., de Gouw, J., and Warneke, C. : Biosphere-atmosphere exchange of volatile organic compounds over C4 biofuel crops, Atmos. Environ., 66, 161-168, 2013.
Guenther, A. B., Jiang, X., Heald, C. L., Sakulyanontvittaya, T., Duhl, T., Emmons, L. K., andWang, X. : The Model of Emissions of Gases and Aerosols from Nature version 2. 1 (MEGAN2. 1): An extended and updated framework for modeling biogenic emissions, Geosci. Model Dev., 5, 1471-1492, doi:10. 5194/gmd-5-1471-2012, 2012.
Hardacre, C. J., Palmer, P. I., Baumanns, K., Rounsevell, M., and Murray-Rust, D. : Probabilistic estimation of future emissions of isoprene and surface oxidant chemistry associated with land-use change in response to growing food needs, Atmos. Chem. Phys., 13, 5451-5472, doi:10. 5194/acp-13-5451-2013, 2013.
Hörtnagl, L., Clement, R., Graus, M., Hammerle, A., Hansel, A., andWohlfahrt, G. : Dealing with disjunct concentration measurements in eddy covariance applications: A comparison of available approaches, Atmos. Environ., 44, 2024-2032, 2010.
Inomata, S. And Tanimoto, H. : A Quantitative Examination of the Detection Sensitivities of Proton-Transfer Reaction Mass Spectrometry for Gaseous 2Propanol and Acetic Acid, Bull. Chem. Soc. Jpn., 83, 900-904, doi:10. 1246/bcsj. 20100043, 2010.
Isaksen, I. S. A., Granier, C., Myhre, G., Berntsen, T. K., Dalsøren, S. B., Gauss, M., Klimont, Z., Benestad, R., Bousquet, P., Collins, W., Cox, T., Eyring, V., Fowler, D., Fuzzi, S., Jöckel, P., Laj, P., Lohmann, U., Maione, M., Monks, P., Prevot, A. S. H., Raes, F., Richter, A., Rognerud, B., Schulz, M., Shindell, D., Stevenson, D. S., Storelvmo, T., Wang, W. C., van Weele, M., Wild, M., and Wuebbles, D. : Atmospheric composition change: Climate-Chemistry interactions, Atmos. Environ., 43, 5138-5192, 2009.
Kaimal, J. C. And Finnigan, J. J. : Atmospheric boundary layer flows: Their structure and measurement, Oxford University Press, USA, 1994.
Karl, M., Guenther, A., Köble, R., Leip, A., and Seufert, G. : A new European plant-specific emission inventory of biogenic volatile organic compounds for use in atmospheric transport models, Biogeosciences, 6, 1059-1087, doi:10. 5194/bg-6-1059-2009, 2009.
Karl, T., Guenther, A., Lindinger, C., Jordan, A., Fall, R. And Lindinger, W. : Eddy covariance measurements of oxygenated volatile organic compound fluxes from crop harvesting using a redesigned proton-transfer-reaction mass spectrometer, J. Geophys. Res. Atmos., 106(D20), 24157-24167, doi:10. 1029/2000jd000112, 2001.
Karl, T., Harren, F., Warneke, C., de Gouw, J., Grayless, C., and Fall, R. : Senescing grass crops as regional sources of reactive volatile organic compounds, J. Geophys. Res. Atmos., 110, D15302, doi:10. 1029/2005JD005777, 2005.
Konig, G., Brunda, M., Puxbaum, H., Hewitt, C. N., Duckham, S. C., and Rudolph, J. : Relative contribution of oxygenated hydrocarbons to the total biogenic VOC emissions of selected mid-European agricultural and natural plant species, Atmos. Environ., 29, 861-874, 1995.
Laffineur, Q., Aubinet, M., Schoon, N., Amelynck, C., Müller, J.-F., Dewulf, J., Van Langenhove, H., Steppe, K., and Heinesch, B. : Abiotic and biotic control of methanol exchanges in a temperate mixed forest, Atmos. Chem. Phys., 12, 577-590, doi:10. 5194/acp-12-577-2012, 2012.
Langford, B., Acton, W., Ammann, C., Valach, A., and Nemitz, E. : Eddy-covariance data with low signal-to-noise ratio: Time-lag determination, uncertainties and limit of detection, Atmos. Meas. Tech., 8, 4197-4213, doi:10. 5194/amt-8-4197-2015, 2015.
Lathière, J., Hauglustaine, D. A., Friend, A. D., De Noblet-Ducoudré, N., Viovy, N., and Folberth, G. A. : Impact of climate variability and land use changes on global biogenic volatile organic compound emissions, Atmos. Chem. Phys., 6, 2129-2146, doi:10. 5194/acp-6-2129-2006, 2006.
Lerdau, M. And Slobodkin, L. : Trace gas emissions and speciesdependent ecosystem services, Trends Ecol. Evol., 17, 309-312, doi:10. 1016/S0169-5347(02)02535-1, 2002.
Meier, U. : Growth stages of mono-and dicotyledonous plants, BBCH Monograph, 2nd Edn., Federal Biological Research Centre for Agriculture and Forestry, 2001.
Moncrieff, J. B., Massheder, J. M., De Bruin, H., Elbers, J., Friborg, T., Heusinkveld, B., Kabat, P., Scott, S., Soegaard, H., and Verhoef, A. : A system to measure surface fluxes of momentum, sensible heat, water vapour and carbon dioxide, J. Hydrol., 188-189, 589-611, 1997.
Monson, R. K., Jones, R. T., Rosenstiel, T. N., and Schnitzler, J. P. : Why only some plants emit isoprene, Plant Cell Environ., 36, 503-516, 2013.
Moureaux, C., Debacq, A., Bodson, B., Heinesch, B., and Aubinet, M. : Annual net ecosystem carbon exchange by a sugar beet crop, Agr. Forest Meteorol., 139, 25-39, 2006.
Neftel, A., Spirig, C., and Ammann, C. : Application and test of a simple tool for operational footprint evaluations, Environ. Pollut., 152, 644-652, 2008.
Niinemets, Ü., Monson, R. K., and SpringerLink: Biology, Controls and Models of Tree Volatile Organic Compound Emissions, Springer Netherlands, Imprint: Springer, Dordrecht, 2013.
Niinemets, Ü., Fares, S., Harley, P. And Jardine, K. J. : Bidirectional exchange of biogenic volatiles with vegetation: emission sources, reactions, breakdown and deposition, Plant Cell Environ., 37, 1790-1809, doi:10. 1111/pce. 12322, 2014.
Osborne, B., Saunders, M., Walmsley, D., Jones, M., and Smith, P. : Key questions and uncertainties associated with the assessment of the cropland greenhouse gas balance, Agr. Ecosyst. Environ., 139, 293-301, 2010.
Park, J.-H., Fares, S., Weber, R., and Goldstein, A. H. : Biogenic volatile organic compound emissions during BEARPEX 2009 measured by eddy covariance and flux-gradient similarity methods, Atmos. Chem. Phys., 14, 231-244, doi:10. 5194/acp-14-231-2014, 2014.
Peñuelas, J., Asensio, D., Tholl, D., Wenke, K., Rosenkranz, M., Piechulla, B., and Schnitzler, J. P. : Biogenic volatile emissions from the soil, Plant Cell Environ., 37, 1866-1891, 2014.
Ruuskanen, T. M., Müller, M., Schnitzhofer, R., Karl, T., Graus, M., Bamberger, I., Hörtnagl, L., Brilli, F., Wohlfahrt, G., and Hansel, A. : Eddy covariance VOC emission and deposition fluxes above grassland using PTR-TOF, Atmos. Chem. Phys., 11, 611-625, doi:10. 5194/acp-11-611-2011, 2011.
Sartelet, K. N., Couvidat, F., Seigneur, C., and Roustan, Y. : Impact of biogenic emissions on air quality over Europe and North America, Atmos. Environ., 53, 131-141, doi:10. 1016/j. Atmosenv. 2011. 10. 046, 2012.
Schade, G. W. And Custer, T. G. : OVOC emissions from agricultural soil in northern Germany during the 2003 European heat wave, Atmos. Environ., 38, 6105-6114, doi:10. 1016/j. Atmosenv. 2004. 08. 017, 2004.
Schwarz, K., Filipiak, W., and Amann, A. : Determining concentration patterns of volatile compounds in exhaled breath by PTR-MS, J. Breath Res., 3, 027002, doi:10. 1088/1752-7155/3/2/027002, 2009.
Spirig, C., Neftel, A., Ammann, C., Dommen, J., Grabmer, W., Thielmann, A., Schaub, A., Beauchamp, J., Wisthaler, A., and Hansel, A. : Eddy covariance flux measurements of biogenic VOCs during ECHO 2003 using proton transfer reaction mass spectrometry, Atmos. Chem. Phys., 5, 465-481, doi:10. 5194/acp-5-465-2005, 2005.
Stavrakou, T., Guenther, A., Razavi, A., Clarisse, L., Clerbaux, C., Coheur, P.-F., Hurtmans, D., Karagulian, F., De Mazière, M., Vigouroux, C., Amelynck, C., Schoon, N., Laffineur, Q., Heinesch, B., Aubinet, M., Rinsland, C., and Müller, J.-F. : First space-based derivation of the global atmospheric methanol emission fluxes, Atmos. Chem. Phys., 11, 4873-4898, doi:10. 5194/acp-11-4873-2011, 2011.
Su, T. : Parametrization of kinetic energy dependences of ion-polar molecule collision rate constants by trajectory calculations, J. Chem. Phys., 100, 4703, doi:10. 1063/1. 466255, 1994.
Taipale, R., Ruuskanen, T. M., and Rinne, J. : Lag time determination in DEC measurements with PTR-MS, Atmos. Meas. Tech., 3, 853-862, doi:10. 5194/amt-3-853-2010, 2010.
Tani, A., Tobe, S., and Shimizu, S. : Uptake of methacrolein and methyl vinyl ketone by tree saplings and implications for forest atmosphere, Environ. Sci. Technol., 44, 7096-7101, 2010.
Tsimpidi, A. P., Trail, M., Hu, Y., Nenes, A., and Russell, A. G. : Modeling an air pollution episode in northwestern United States: Identifying the effect of nitrogen oxide and volatile organic compound emission changes on air pollutants formation using direct sensitivity analysis, J. AirWaste Manage., 62, 1150-1165, 2012.
Warneke, C., Luxembourg, S. L., De Gouw, J. A., Rinne, H. J. I., Guenther, A. B., and Fall, R. : Disjunct eddy covariance measurements of oxygenated volatile organic compounds fluxes from an alfalfa field before and after cutting, J. Geophys. Res.-Atmos., 107, 1-6, doi:10. 1029/2001JD000594, 2002.
White, M. L., Russo, R. S., Zhou, Y., Ambrose, J. L., Haase, K., Frinak, E. K., Varner, R. K., Wingenter, O. W., Mao, H., Talbot, R., and Sive, B. C. : Are biogenic emissions a significant source of summertime atmospheric toluene in the rural Northeastern United States>, Atmos. Chem. Phys., 9, 81-92, doi:10. 5194/acp-9-81-2009, 2009.
Williams, J. E., van Velthoven, P. F. J., and Brenninkmeijer, C. A. M. : Quantifying the uncertainty in simulating global tropospheric composition due to the variability in global emission estimates of Biogenic Volatile Organic Compounds, Atmos. Chem. Phys., 13, 2857-2891, doi:10. 5194/acp-13-2857-2013, 2013.
Ziemann, P. J. And Atkinson, R. : Kinetics, products, and mechanisms of secondary organic aerosol formation, Chem. Soc. Rev., 41, 6582-6605, 2012.
Similar publications
Sorry the service is unavailable at the moment. Please try again later.
This website uses cookies to improve user experience. Read more
Save & Close
Accept all
Decline all
Show detailsHide details
Cookie declaration
About cookies
Strictly necessary
Performance
Strictly necessary cookies allow core website functionality such as user login and account management. The website cannot be used properly without strictly necessary cookies.
This cookie is used by Cookie-Script.com service to remember visitor cookie consent preferences. It is necessary for Cookie-Script.com cookie banner to work properly.
Performance cookies are used to see how visitors use the website, eg. analytics cookies. Those cookies cannot be used to directly identify a certain visitor.
Used to store the attribution information, the referrer initially used to visit the website
Cookies are small text files that are placed on your computer by websites that you visit. Websites use cookies to help users navigate efficiently and perform certain functions. Cookies that are required for the website to operate properly are allowed to be set without your permission. All other cookies need to be approved before they can be set in the browser.
You can change your consent to cookie usage at any time on our Privacy Policy page.