A large strain hyperelastic viscoelastic-viscoplastic-damage constitutive model based on a multi-mechanism non-local damage continuum for amorphous glassy polymers
Nguyen, Van Dung; Lani, Frédéric; Pardoen, Thomaset al.
2016 • In International Journal of Solids and Structures, 96, p. 192-216
NOTICE: this is the author’s version of a work that was accepted for publication in International Journal of Solids and Structures. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published in International Journal of Solids and Structures 96, 2016, 192-216, DOI:10.1016/j.ijsolstr.2016.06.008
All documents in ORBi are protected by a user license.
[en] A large strain hyperelastic phenomenological constitutive model is proposed to model the highly nonlinear, rate-dependent mechanical behavior of amorphous glassy polymers under isothermal conditions. A corotational formulation is used through the total Lagrange formalism. At small strains, the viscoelastic behavior is captured using the generalized Maxwell model. At large strains beyond a viscoelastic limit characterized by a pressure-sensitive yield function, which is extended from the Drucker-Prager one, a viscoplastic region follows. The viscoplastic flow is governed by a non-associated Perzyna-type flow rule incorporating this pressure-sensitive yield function and a quadratic flow potential in order to capture the volumetric deformation during the plastic process. The stress reduction phenomena arising from the post-peak plateau and during the failure stage are considered in the context of a continuum damage mechanics approach.
The post-peak softening is modeled by an internal scalar, so-called softening variable, whose evolution is governed by a saturation law. When the softening variable is saturated, the rehardening stage is naturally obtained since the isotropic and kinematic hardening phenomena are still developing. Beyond the onset of failure characterized by a pressure-sensitive failure criterion, the damage process leading to the total failure is controlled by a second internal scalar, so-called failure variable. The final failure occurs when the failure variable reaches its critical value. To avoid the loss of solution uniqueness when dealing with the continuum damage mechanics formalism, a non-local implicit gradient formulation is used for both the softening
and failure variables, leading to a multi-mechanism non-local damage continuum. The pressure sensitivity considered in both the yield and failure conditions allows for the distinction under compression and tension loading conditions. It is shown through experimental comparisons that the proposed constitutive model has the ability to capture the complex behavior of amorphous glassy polymers, including their failure.
Nguyen, Van Dung ; Université de Liège > Département d'aérospatiale et mécanique > Computational & Multiscale Mechanics of Materials (CM3)
Lani, Frédéric; Université Catholique de Louvain - UCL > Institute of Mechanics, Materials and Civil Engineering
Pardoen, Thomas; Université Catholique de Louvain - UCL > Institute of Mechanics, Materials and Civil Engineering
Morelle, Xavier; Université Catholique de Louvain - UCL > Institute of Mechanics, Materials and Civil Engineering
Noels, Ludovic ; Université de Liège > Département d'aérospatiale et mécanique > Computational & Multiscale Mechanics of Materials (CM3)
Language :
English
Title :
A large strain hyperelastic viscoelastic-viscoplastic-damage constitutive model based on a multi-mechanism non-local damage continuum for amorphous glassy polymers
Publication date :
01 October 2016
Journal title :
International Journal of Solids and Structures
ISSN :
0020-7683
eISSN :
1879-2146
Publisher :
Pergamon Press (part of Elsevier Science), Oxford, United Kingdom
Abu Al-Rub, R.K., Tehrani, A.H., Darabi, M.K., Application of a large deformation nonlinear-viscoelastic viscoplastic viscodamage constitutive model to polymers and their composites. Int. J. Damage Mech. 24:2 (2015), 198–244, 10.1177/1056789514527020.
Ames, N.M., Srivastava, V., Chester, S.A., Anand, L., A thermo-mechanically coupled theory for large deformations of amorphous polymers. part ii: Applications. Int. J. Plast. 25:8 (2009), 1495–1539, 10.1016/j.ijplas.2008.11.005.
Anand, L., Ames, N., On modeling the micro-indentation response of an amorphous polymer. Int. J. Plast. 22:6 (2006), 1123–1170, 10.1016/j.ijplas.2005.07.006.
Anand, L., Ames, N.M., Srivastava, V., Chester, S.A., A thermo-mechanically coupled theory for large deformations of amorphous polymers. part i: Formulation. Int. J. Plastic. 25:8 (2009), 1474–1494, 10.1016/j.ijplas.2008.11.004.
Arruda, E.M., Boyce, M.C., Jayachandran, R., Effects of strain rate, temperature and thermomechanical coupling on the finite strain deformation of glassy polymers. Mech. Mater. 19:2–3 (1995), 193–212, 10.1016/0167-6636(94)00034-E.
Bazant, Z.P., Jirásek, M., Nonlocal integral formulations of plasticity and damage: survey of progress. J. Eng. Mech. 128:11 (2002), 1119–1149.
Bigoni, D., Piccolroaz, A., Yield criteria for quasibrittle and frictional materials. Int. J. Solids Struct. 41:11–12 (2004), 2855–2878, 10.1016/j.ijsolstr.2003.12.024.
Bodner, S., Partom, Y., Constitutive equations for elastic-viscoplastic strain-hardening materials. J. Appl. Mech. 42:2 (1975), 385–389.
Boyce, M.C., Arruda, E.M., Jayachandran, R., The large strain compression, tension, and simple shear of polycarbonate. Polym. Eng. Sci. 34:9 (1994), 716–725, 10.1002/pen.760340904.
Boyce, M.C., Parks, D.M., Argon, A.S., Large inelastic deformation of glassy polymers. part I: rate dependent constitutive model. Mech. Mater. 7:1 (1988), 15–33, 10.1016/0167-6636(88)90003-8.
Brekelmans, W., Schreurs, P., de Vree, J., Continuum damage mechanics for softening of brittle materials. Acta Mechanica 93:1–4 (1992), 133–143, 10.1007/BF01182579.
Buckley, C., Harding, J., Hou, J., Ruiz, C., Trojanowski, A., Deformation of thermosetting resins at impact rates of strain. part i: Experimental study. J. Mech. Phys. Solids 49:7 (2001), 1517–1538, 10.1016/S0022-5096(00)00085-5.
Buhan, M.d., Frey, P., A generalized model of non-linear viscoelasticity: numerical issues and applications. Int. J. Numer. Methods Eng. 86:13 (2011), 1544–1557, 10.1002/nme.3115.
Canal, L.P., Segurado, J., LLorca, J., Failure surface of epoxy-modified fiber-reinforced composites under transverse tension and out-of-plane shear. Int. J. Solids Struct. 46:11–12 (2009), 2265–2274, 10.1016/j.ijsolstr.2009.01.014.
Chen, W., Lu, F., Cheng, M., Tension and compression tests of two polymers under quasi-static and dynamic loading. Polym. Test. 21:2 (2002), 113–121, 10.1016/S0142-9418(01)00055-1.
Chevalier, J., Morelle, X., Bailly, C., Camanho, P., Pardoen, T., Lani, F., Micro-mechanics based pressure dependent failure model for highly cross-linked epoxy resins. Eng. Fract. Mech. 158 (2016), 1–12, 10.1016/j.engfracmech.2016.02.039.
Chowdhury, K., Benzerga, A., Talreja, R., An analysis of impact-induced deformation and fracture modes in amorphous glassy polymers. Eng. Fract. Mech. 75:11 (2008), 3328–3342, 10.1016/j.engfracmech.2007.08.007 Local Approach to Fracture (1986–2006): Selected papers from the 9th European Mechanics of Materials Conference, URL: http://www.sciencedirect.com/science/article/pii/S0013794407003451.
Chowdhury, K., Talreja, R., Benzerga, A., Effects of manufacturing-induced voids on local failure in polymer-based composites. J. Eng. Mater. Technol., Trans. ASME 130:2 (2008), 0210101–0210109, 10.1115/1.2841529.
Colak, O.U., Modeling deformation behavior of polymers with viscoplasticity theory based on overstress. Int. J. Plastic. 21:1 (2005), 145–160, 10.1016/j.ijplas.2004.04.004.
Cuitino, A., Ortiz, M., A material-independent method for extending stress update algorithms from small-strain plasticity to finite plasticity with multiplicative kinematics. Eng. Comput. 9:4 (1992), 437–451, 10.1108/eb023876.
Engelen, R.A., Geers, M.G., Baaijens, F.P., Nonlocal implicit gradient-enhanced elasto-plasticity for the modelling of softening behaviour. Int. J. Plast. 19:4 (2003), 403–433, 10.1016/S0749-6419(01)00042-0.
Estevez, R., Tijssens, M., der Giessen, E.V., Modeling of the competition between shear yielding and crazing in glassy polymers. J. Mech. Phys. Solids 48:12 (2000), 2585–2617, 10.1016/S0022-5096(00)00016-8.
Eterovic, A.L., Bathe, K.-J., A hyperelastic-based large strain elasto-plastic constitutive formulation with combined isotropic-kinematic hardening using the logarithmic stress and strain measures. Int. J. Numer. Methods Eng. 30:6 (1990), 1099–1114, 10.1002/nme.1620300602.
Fiedler, B., Hojo, M., Ochiai, S., Schulte, K., Ando, M., Failure behavior of an epoxy matrix under different kinds of static loading. Composites Sci. Technol. 61:11 (2001), 1615–1624, 10.1016/S0266-3538(01)00057-4.
Frank, G.J., Brockman, R.A., A viscoelastic-viscoplastic constitutive model for glassy polymers. Int. J. Solids Struct. 38:30–31 (2001), 5149–5164, 10.1016/S0020-7683(00)00339-5.
Geers, M., Borst, R., Brekelmans, W., Peerlings, R., Validation and internal length scale determination for a gradient damage model: application to short glass-fibre-reinforced polypropylene. Int. J. Solids Struct. 36:17 (1999), 2557–2583, 10.1016/S0020-7683(98)00123-1.
Geers, M.G.D., Experimental analysis and computational modelling of damage and fracture, 1997, Technische Universiteit Eindhoven Ph.D. thesis.
Gerlach, R., Siviour, C.R., Petrinic, N., Wiegand, J., Experimental characterisation and constitutive modelling of rtm-6 resin under impact loading. Polymer 49:11 (2008), 2728–2737, 10.1016/j.polymer.2008.04.018.
Govaert, L., Timmermans, P., Brekelmans, W., The influence of intrinsic strain softening on strain localization in polycarbonate: modeling and experimental validation. J. Eng. Mater. Technol. 122:2 (2000), 177–185.
Haj-Ali, R.M., Muliana, A.H., Numerical finite element formulation of the schapery non-linear viscoelastic material model. Int. J. Num. Methods Eng. 59:1 (2004), 25–45, 10.1002/nme.861.
Hine, P., Duckett, R., Kaddour, A., Hinton, M., Wells, G., The effect of hydrostatic pressure on the mechanical properties of glass fibre/epoxy unidirectional composites. Composites Part A 36:2 (2005), 279–289, 10.1016/j.compositesa.2004.06.004.
Kachanov, L., Introduction to Continuum Damage Mechanics, vol. 10, 2013, Springer Science & Business Media.
Kim, J.-S., Muliana, A.H., A combined viscoelastic-viscoplastic behavior of particle reinforced composites. Int. J. Solids Struct. 47:5 (2010), 580–594, 10.1016/j.ijsolstr.2009.10.019.
Krairi, A., Doghri, I., A thermodynamically-based constitutive model for thermoplastic polymers coupling viscoelasticity, viscoplasticity and ductile damage. Int. J. Plast. 60:0 (2014), 163–181, 10.1016/j.ijplas.2014.04.010.
Krempl, E., McMahon, J., Yao, D., Viscoplasticity based on overstress with a differential growth law for the equilibrium stress. Mech. Mater. 5:1 (1986), 35–48, 10.1016/0167-6636(86)90014-1.
Lemaitre, J., Chaboche, J.-L., Mechanics of Solid Materials, 1994, Cambridge University Press.
Lesser, A.J., Kody, R.S., A generalized model for the yield behavior of epoxy networks in multiaxial stress states. J. Polym. Sci. Part B 35:10 (1997), 1611–1619, 10.1002/(SICI)1099-0488(19970730)35:10<1611::AID-POLB13>3.0.CO;2-D.
van Melick, H., Govaert, L., Meijer, H., On the origin of strain hardening in glassy polymers. Polymer 44:8 (2003), 2493–2502, 10.1016/S0032-3861(03)00112-5.
Melro, A., Camanho, P., Pires, F.A., Pinho, S., Micromechanical analysis of polymer composites reinforced by unidirectional fibres: Part i—constitutive modelling. Int. J. Solids Struct. 50:11–12 (2013), 1897–1905, 10.1016/j.ijsolstr.2013.02.009.
Miled, B., Doghri, I., Delannay, L., Coupled viscoelastic–viscoplastic modeling of homogeneous and isotropic polymers: Numerical algorithm and analytical solutions. Comput. Methods Appl. Mech. Eng. 200:47–48 (2011), 3381–3394, 10.1016/j.cma.2011.08.015.
Moran, B., Ortiz, M., Shih, C.F., Formulation of implicit finite element methods for multiplicative finite deformation plasticity. Int. J. Numer. Methods Eng. 29:3 (1990), 483–514, 10.1002/nme.1620290304.
Morelle, X., Mechanical characterization and physics-based modeling of highly-crosslinked epoxy resin, 2015, Université catholique de Louvain Ph.D. thesis.
Morelle, X.P., Chevalier, J., Bailly, C., Pardoen, T., Lani, F., Mechanical characterization and modeling of the deformation and failure of the highly cross-linked rtm6 epoxy resin. Submitted Int. J. Plast., 2015.
Mulliken, A., Boyce, M., Mechanics of the rate-dependent elastic–plastic deformation of glassy polymers from low to high strain rates. Int. J. Solids Struct. 43:5 (2006), 1331–1356, 10.1016/j.ijsolstr.2005.04.016.
Nielsen, L.E., Cross-linking effect on physical properties of polymers. J. Macromol. Sci. Part C 3:1 (1969), 69–103, 10.1080/15583726908545897.
Peerlings, R., Geers, M., de Borst, R., Brekelmans, W., A critical comparison of nonlocal and gradient-enhanced softening continua. Int. J. Solids Struct. 38:44–45 (2001), 7723–7746, 10.1016/S0020-7683(01)00087-7.
Peerlings, R.H.J., De Borst, R., Brekelmans, W.A.M., De Vree, J.H.P., Gradient enhanced damage for quasi-brittle materials. Int. J. Numer. Methods Eng. 39:19 (1996), 3391–3403.
Perzyna, P., Thermodynamic theory of viscoplasticity Advances in Applied Mechanics, vol. 11, 1971, Elsevier, 313–354, 10.1016/S0065-2156(08)70345-4.
Poulain, X., Benzerga, A., Goldberg, R., Finite-strain elasto-viscoplastic behavior of an epoxy resin: Experiments and modeling in the glassy regime. Int. J. Plastic. 62 (2014), 138–161, 10.1016/j.ijplas.2014.07.002.
Reese, S., Govindjee, S., A theory of finite viscoelasticity and numerical aspects. Int. J. Solids Struct. 35:26–27 (1998), 3455–3482, 10.1016/S0020-7683(97)00217-5.
Sauer, J.a., Deformation, yield and fracture of polymers at high pressure. Polym. Eng. Sci. 17:3 (1977), 150–164, 10.1002/pen.760170304.
Schiessel, H., Metzler, R., Blumen, A., Nonnenmacher, T.F., Generalized viscoelastic models: their fractional equations with solutions. J. Phys. A, 28(23), 1995, 6567 URL: http://stacks.iop.org/0305-4470/28/i=23/a=012.
Selke, A.E., Variational models of thermo-viscoelastic damage: applications to polymer behavior and coupling with the thick level set approach to non-local damage, 2016, Ecole Centrale de Nantes Ph.D. thesis.
Shu, J.Y., Barlow, C.Y., Strain gradient effects on microscopic strain field in a metal matrix composite. Int. J. Plast. 16:5 (2000), 563–591, 10.1016/S0749-6419(99)00088-1.
Simo, J., On a fully three-dimensional finite-strain viscoelastic damage model: Formulation and computational aspects. Comput. Methods Appl. Mech. Eng. 60:2 (1987), 153–173, 10.1016/0045-7825(87)90107-1.
de Souza Neto, E.A., Peric, D., Owen, D.R.J., Computational Methods for Plasticity: Theory and Applications, 2011, John Wiley & Sons.
Stölken, J., Evans, A., A microbend test method for measuring the plasticity length scale. Acta Materialia 46:14 (1998), 5109–5115, 10.1016/S1359-6454(98)00153-0.
Tervoort, T., Smit, R., Brekelmans, W., Govaert, L., A constitutive equation for the elasto-viscoplastic deformation of glassy polymers. Mech. Time-Dependent Mater. 1:3 (1997), 269–291, 10.1023/A:1009720708029.
Tschoegl, N., Knauss, W., Emri, I., Poisson's ratio in linear viscoelasticity—a critical review. Mech. Time-Dependent Mater. 6:1 (2002), 3–51, 10.1023/A:1014411503170.
Van Der Sluis, O., Schreurs, P., Meijer, H., Homogenisation of structured elastoviscoplastic solids at finite strains. Mech. Mater. 33:9 (2001), 499–522, 10.1016/S0167-6636(01)00066-7.
Vogler, M., Rolfes, R., Camanho, P., Modeling the inelastic deformation and fracture of polymer composites—part i: Plasticity model. Mech. Mater. 59 (2013), 50–64, 10.1016/j.mechmat.2012.12.002.
Wu, L., Becker, G., Noels, L., Elastic damage to crack transition in a coupled non-local implicit discontinuous galerkin/extrinsic cohesive law framework. Comput. Methods Appl. Mech. Eng. 279 (2014), 379–409, 10.1016/j.cma.2014.06.031.
Wu, L., Tjahjanto, D., Becker, G., Makradi, A., Jérusalem, A., Noels, L., A micro–meso-model of intra-laminar fracture in fiber-reinforced composites based on a discontinuous galerkin/cohesive zone method. Eng. Fract. Mech. 104 (2013), 162–183, 10.1016/j.engfracmech.2013.03.018.
Wu, P., van der Giessen, E., On neck propagation in amorphous glassy polymers under plane strain tension. Int. J. Plastic. 11:3 (1995), 211–235, 10.1016/0749-6419(94)00043-3.
Xia, Z., Shen, X., Ellyin, F., Cyclic deformation behavior of an epoxy polymer. part ii: predictions of viscoelastic constitutive models. Polym. Eng. Sci. 45:1 (2005), 103–113, 10.1002/pen.20235.
Xia, Z., Shen, X., Ellyin, F., An assessment of nonlinearly viscoelastic constitutive models for cyclic loading: the effect of a general loading/unloading rule. Mech. Time-Dependent Mater. 9:4 (2006), 79–98, 10.1007/s11043-006-9004-3.
Yamini, S., Young, R., The mechanical properties of epoxy resins. J. Mater. Sci. 15:7 (1980), 1814–1822, 10.1007/BF00550602.
Yang, L., Yan, Y., Liu, Y., Ran, Z., Microscopic failure mechanisms of fiber-reinforced polymer composites under transverse tension and compression. Composites Sci. Technol. 72:15 (2012), 1818–1825, 10.1016/j.compscitech.2012.08.001.
Zaïri, F., Naït-Abdelaziz, M., Gloaguen, J., Lefebvre, J., Modelling of the elasto-viscoplastic damage behaviour of glassy polymers. Int. J. Plastic. 24:6 (2008), 945–965, 10.1016/j.ijplas.2007.08.001.
Zhang, C., Moore, I.D., Nonlinear mechanical response of high density polyethylene. part ii: Uniaxial constitutive modeling. Polym. Eng. Sci. 37:2 (1997), 414–420, 10.1002/pen.11684.