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Abstract

A large strain hyperelastic phenomenological constitutive model is proposed to model the highly nonlinear,

rate-dependent mechanical behavior of amorphous glassy polymers under isothermal conditions. A corota-

tional formulation is used through the total Lagrange formalism. At small strains, the viscoelastic behavior

is captured using the generalized Maxwell model. At large strains beyond a viscoelastic limit character-

ized by a pressure-sensitive yield function, which is extended from the Drucker-Prager one, a viscoplastic

region follows. The viscoplastic flow is governed by a non-associated Perzyna-type flow rule incorporating

this pressure-sensitive yield function and a quadratic flow potential in order to capture the volumetric de-

formation during the plastic process. The stress reduction phenomena arising from the post-peak plateau

and during the failure stage are considered in the context of a continuum damage mechanics approach.

The post-peak softening is modeled by an internal scalar, so-called softening variable, whose evolution is

governed by a saturation law. When the softening variable is saturated, the rehardening stage is naturally

obtained since the isotropic and kinematic hardening phenomena are still developing. Beyond the onset of

failure characterized by a pressure-sensitive failure criterion, the damage process leading to the total failure

is controlled by a second internal scalar, so-called failure variable. The final failure occurs when the failure

variable reaches its critical value. To avoid the loss of solution uniqueness when dealing with the contin-

uum damage mechanics formalism, a non-local implicit gradient formulation is used for both the softening

and failure variables, leading to a multi-mechanism non-local damage continuum. The pressure sensitivity

considered in both the yield and failure conditions allows for the distinction under compression and tension

loading conditions. It is shown through experimental comparisons that the proposed constitutive model has

the ability to capture the complex behavior of amorphous glassy polymers, including their failure.

Keywords: Glassy polymers, Large strain, Hyperelastic, Viscoelastic, Viscoplastic, Non-local damage,

FEM
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1. Introduction

Amorphous glassy polymers are widely used in combination with different types of fibers to manufacture

fiber reinforced polymers (FRPs) for applications in a wide range of industrial components. Due to the

increasing interest in FRPs, accurate constitutive representations of their constituents are more and more

required to accurately capture the mechanical behavior through multi-scale analyses. By considering proper

constitutive model for each constituent of composite materials, a computational micro-mechanics approach

can be achieved to link up the FRPs behavior to not only constituent behaviors but also to the constituent

arrangements as well as the constituent interactions (Canal et al., 2009; Melro et al., 2013, e.g.).
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Figure 1: Typical stress-strain curve of amorphous glassy polymers at a constant given engineering strain rate: (a) multiple

stages and (b) modeling strategy.

In general, the mechanical behavior of amorphous glassy polymers depends on the strain rate, hydro-

static pressure and temperature, as demonstrated through numerous experimental tests (Boyce et al., 1994;

Lesser and Kody, 1997; Buckley et al., 2001; Fiedler et al., 2001; Chen et al., 2002; Hine et al., 2005;

Mulliken and Boyce, 2006; Morelle et al., 2015). A typical stress-strain behavior for this kind of materials

under uniaxial monotonic loading conditions is sketched out in Fig. 1a, in which the whole stress-strain curve

can be divided into multiple stages. After an elastic stage at small strains, a nonlinear stage continues until

reaching a peak stress, where large molecular movements can take place. After this peak value, the stress

tends to decrease with increasing deformation. This effect is called softening. The physical origin of softening

is still subject to debate but seems related to the kinetics of initiation, growth, and coalescence of shear

transformation zones, which translate into the micro-shear banding as a true material feature (Morelle,

2015). At large strains, when the softening is saturated, a rehardening stage takes place until failure is
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attained. The hardening phenomenon in glassy polymers has been interpreted using the analogy of an

entropic spring (the three-dimensional polymer network), of which the non-linear stiffness depends notably

either on the density of entanglements for thermoplastics (Boyce et al., 1988; Wu and van der Giessen, 1995;

Tervoort et al., 1997) or the density of cross-links for thermosets. The compressive behavior differs from

the tensile one as a result of the pressure-dependent yielding of polymers. Larger compressive peak stresses,

failure stresses, and failure strains are normally observed in comparison to the tensile case at the same strain

rate. The full range behavior shown in Fig. 1a is observed with epoxy resins under compressive loading,

while under tensile loading the fracture of epoxy resin can occur prematurely before reaching the peak stress

(Fiedler et al., 2001; Morelle et al., 2015), so the softening and rehardening phenomena are not always

observed. In the case of a ductile, thermoplastic polymer (e.g. polycarbonate), this full range behavior

appears in compression, tension, and shear loading conditions (Boyce et al., 1994). At small strain levels,

the stiffness increases with the strain rates. A viscoelastic contribution should be taken into account at this

stage. At higher strain levels, the non-linearity is enhanced with the presence of plasticity. The stress-strain

response exhibits a strong strain rate dependence in the plastic regime. The material microstructure always

involves internal defects at nano- and micro-scale. Moreover, the material microstructure can be modified

under various loading conditions with the presence of some irreversible phenomena such as cavitation, and

chain scission etc., leading to a significant amount of micro-voids and micro-cracks. These pre-existing and

arising defects can then contribute to the stress decrease in the softening stage and play an important role

on the initiation of the failure stage. A couple viscoelastic-viscoplastic-damage constitutive model in the

large strain framework is thus necessary in order to capture the entire range of stress-strain responses at

various strain rates of these materials.

The rate dependent behavior of polymers in general can be modeled using a viscoelastic constitutive law.

Some available viscoelastic models can be used as the generalized Maxwell model (Reese and Govindjee,

1998; Buhan and Frey, 2011), generalized Kelvin model (Zhang and Moore, 1997), fractional model (Schiessel

et al., 1995), or Schapery model (Haj-Ali and Muliana, 2004). In these models, a network of multiple springs

and dashpots is considered. The rate effect is modeled by a Newtonian fluid flow governing each dashpot.

Although these models can be extended to the finite strain regime and consider non-linear Newtonian fluid

flows for the dashpots, a proper viscoelastic constitutive model cannot capture the complex behavior of

amorphous glassy polymers, which combines different complex mechanisms, such as plasticity, softening,

failure ingredients, etc. This motivates the use of a more complex constitutive model. For this purpose

many viscoplastic models have been proposed to predict the rate dependent behavior of polymers. On

the one hand, the physically-based constitutive models have been proposed, see e.g. some physically-based

models proposed by Boyce et al. (1988); Arruda et al. (1995); Tervoort et al. (1997); Govaert et al. (2000).

Although these models can capture the complex behavior of polymers in the glassy state, the experimental

calibration of their constitutive parameters can be complex. On the other hand, the phenomenological-based
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constitutive models have been developed and sometimes provide an easier modeling approach. Most of them

were initially used for metals and then extended to polymers. In this category, the Perzyna viscoplasticity

theory (Perzyna, 1971) can be used to model the rate-dependent behavior of polymers as demonstrated by

Van Der Sluis et al. (2001); Kim and Muliana (2010); Abu Al-Rub et al. (2015); the viscoplastic theory based

on the overstress (VBO) concept (Krempl et al., 1986) can be considered for polymers as shown by Colak

(2005); the Bodner and Partom viscoplastic model (Bodner and Partom, 1975) can be applied to polymers as

also shown by Frank and Brockman (2001); Zäıri et al. (2008). The complex behavior of polymers can thus

be captured using a viscoelastic-viscoplastic constitutive model with a robust integration algorithm to be

implemented in finite element codes (Miled et al., 2011) by combining a viscoelastic constitutive model with a

phenomenological-based viscoplastic one. Additionally, to model the material degradation when dealing with

the fracture behavior of polymers, a viscoelastic-viscoplastic-damage constitutive model can be used (Abu

Al-Rub et al., 2015; Zäıri et al., 2008; Krairi and Doghri, 2014). However, the complex mechanical behavior

of amorphous glassy polymers exhibiting multiple stages coupled with the compression-tension asymmetry

in both yielding and failure stages were not considered. The failure of amorphous glassy polymers can be

studied with a physically-based constitutive model coupled with a crazing model as considered in Chowdhury

et al. (2008a,b).

When dealing with softening phenomena, a continuum damage mechanics (CDM) approach can be used

(Lemaitre and Chaboche, 1994; Kachanov, 2013). The material softening is modeled by a set of internal

variables (so-called damage variables) in order to capture the local stress reduction. Beyond the onset of

softening, the deformation tends to localize into a narrow zone. If a standard continuum is considered when

strain localization happens, its underlying local action assumption, in which the stress state at a material

point depends only on the deformation state at that point, leads to the loss of solution uniqueness. Con-

sequently, the boundary value problem becomes ill-posed. The numerical solution obtained from the finite

element method using the standard continuum differs with the mesh size and the mesh direction without

convergence. Accordingly, the numerical solution becomes physically meaningless. This problem is not

purely numerical since the mesh dependence is the direct consequence of ill-posedness of the underlying

mathematical problem, i.e. the boundary value problem loses ellipticity in statics or hyperbolicity in dy-

namics (Engelen et al., 2003). Many non-local models have been proposed not only to address this numerical

deficiency, but also to represent a physical behavior, see e.g. the overview by Bazant and Jirásek (2002)

and its references. The ill-posed nature of the boundary value problem can be removed by incorporating an

intrinsic length allowing interactions between neighboring material points. The physical meaning of such a

length was studied for instance by Stölken and Evans (1998); Geers et al. (1999); Shu and Barlow (2000).

Because a real material always possesses a complex microstructure, the material heterogeneity and true

material failure mechanisms lead to local spatial variations of material properties. In the case of polymers,

it was shown that crazing occurs at regular interval motivating the introduction of a length scale (Selke,
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2016). Therefore, a non-local constitutive description needs to be considered since interactions between

neighboring material points cannot be neglected. In this work, the non-local implicit formulation pioneered

by Peerlings et al. (1996) is adopted as it can be easily integrated into a standard finite element formulation.

The main goal of this work is to develop a phenomenological viscoelastic-viscoplastic-damage constitutive

model which has the ability to incorporate the viscoelasticity, viscoplasticity, softening, rehardening, and

tension-compression asymmetry in both yielding and fracture processes with the following novelties:

• A large strain hyperelastic viscoelastic-viscoplastic-damage constitutive model able to capture not only

multi-stage but also the compression-tension asymmetry in both yielding and failure in amorphous

glassy polymers;

• A new power-enhanced yield condition generalized from the classical Drucker-Prager yield function;

• Multi-mechanism non-local damage continuum with a implicit gradient-enhanced formulation applied

to multiple softening variables, in order to cover the problem of the loss of solution uniqueness when

dealing with the strain softening phenomena;

• Identification of the constitutive parameters for the highly cross-linked RTM6 epoxy resin and valida-

tion by comparison with experimental tests under various constant engineering strain rates.

This coupled constitutive model is implemented in the hyperelastic large strain framework in a corotational

formulation with the total Lagrange formalism, which was shown to be easily implemented in finite element

codes (Eterovic and Bathe, 1990; Cuitino and Ortiz, 1992). The modeling strategy involves the following

elements:

• At small strains, a viscoelastic behavior is assumed. The viscoelastic constitutive model is extended

from the linear generalized Maxwell model. The rheological topology contains multiple spring-dashpot

elements. Bi-logarithmic potential functions are considered in the springs and quadratic dissipation

functions are considered in the dashpots. The total viscoelastic potential is then evaluated and the

Kirchhoff stress expressed in the viscoelastic corotational space (so-called corotational Kirchhoff stress)

is derived from this viscoelastic potential through its energetically conjugated measure.

• The viscoplastic threshold is defined using a pressure-sensitive yield condition upon which a viscoplastic

flow takes place. In this work, a generalized version of the Drucker-Prager yield function is used with a

power-enhancement on the octahedral term. The viscoplastic flow rule follows the Perzyna viscoplastic

theory (Perzyna, 1971) incorporating this extended pressure-sensitive Drucker-Prager yield function

with a pressure-sensitive plastic flow potential. In order to accurately predict the Poisson effect during

the plastic flow, a non-associated flow rule is used. The choice of the non-associated flow rule allows

predicting accurately the plastic Poisson effect using a plastic flow potential different from the yield
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function. In this work, a quadratic flow potential is considered to correctly capture the volumetric

deformation during the plastic process with a constant plastic Poisson ratio (Melro et al., 2013). Both

isotropic and kinematic hardening phenomena are considered to capture the pre-peak non-linearity

and rehardening stages.

• By combining the viscoelastic model with the Perzyna viscoplastic flow, a coupled viscoelastic-viscoplastic

constitutive law without softening is obtained. In this work, the stress decrease in the softening stage is

considered using the continuum damage mechanics (CDM) (Lemaitre and Chaboche, 1994; Kachanov,

2013), on which the softening behavior is modeled using a scalar variable, so-called softening variable,

which is governed by a saturated law. After this stage, the rehardening sets in as the kinematic and

isotropic hardening phenomena are still developing.

• The onset of the failure stage is predicted using a pressure-sensitive failure condition, which allows

capturing distinct compression and tensile failure behaviors. Under the assumption that the failure

occurrence is progressive, the failure stage is modeled in the context of the CDM by a second internal

variable, so-called failure variable. Its value ranges from 0 at the failure onset to 1, which corresponds

to final failure.

• A typical issue of the local CDM is the problem of loss of solution uniqueness when the softening

occurs. This problem can be avoided using a non-local implicit formulation (Peerlings et al., 1996).

In this work, two separated softening sources are considered, so that this remedy should be applied

to both softening and failure variables. This requirement leads to consider a multi-mechanism non-

local damage continuum, which allows an arbitrary number of softening variables to be combined; the

particular case with two variables being easily deduced.

The paper is organized as follows. The generalities of the multi-mechanism non-local damage continuum

are first presented in Section 2. The viscoelastic-viscoplastic-damage constitutive law is presented in Section

3, where the related theoretical aspects of viscoelastic, viscoplastic, and softening ingredients are detailed.

The material parameters identification using experimental results of the RTM6 epoxy resin are discussed

in Section 4. The numerical study on a notched sample is provided in Section 5 in order to demonstrate

the mesh objectivity under damage propagation and localization. Finally, the experimental validation is

reported in Section 6 in order to assess the identified constitutive parameters.

2. Non-local continuum damage mechanics

Let us consider a body B, whose reference configuration is B0 and whose reference boundary is ∂B0,

subjected to a volumetric force B0. The boundary ∂B0 can be divided into two distinct parts: the Dirichlet

boundary part ∂DB0, where the displacement is prescribed to u0; and the Neumann boundary part ∂NB0,
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where the surface traction is prescribed to T0. These two parts satisfy ∂DB0 ∪ ∂NB0 = ∂B0 and ∂DB0 ∩

∂NB0 = ∅. The equilibrium equations over the body B0 under the quasi-static loading read

P ·∇0 + B0 = 0 on B0 , (1)

u = u0 on ∂DB0 , and (2)

P ·N = T0 on ∂NB0 , (3)

where P is the first Piola-Kirchoff stress tensor and where N is the unit outward normal to ∂B0 in the refer-

ence configuration. This problem statement is completed by a material constitutive law. In all generalities,

this material constitutive law can be written as

P = P (F(t); Z(τ), τ ∈ [0 t]) , (4)

where F is the deformation gradient tensor and where Z is a vector that contains all internal variables in

order to model history and path-dependent processes.

In this work, the softening phenomena are addressed in the context of the continuum damage mechanics

(CDM) (Lemaitre and Chaboche, 1994; Kachanov, 2013). Basically, in the CDM, the material degradation

is captured by an internal scalar D, so-called isotropic softening variable. The value of D varies from 0

for an intact material to 1 when the total failure occurs. Under the assumption that the strain measures

in the current configuration and its undamaged representation are equivalent (Lemaitre, 1985), the first

Piola-Kirchhoff stress is given by

P = (1−D)P̂ , (5)

where P̂, so-called the effective first Piola-Kirchhoff stress tensor, denotes the first Piola-Kirchhoff stress

tensor in the undamaged representation. The required constitutive model (4) is then specified through the

evolution of the softening variable D

Ḋ = D (D,F(t); Z(τ), τ ∈ [0 t]) , (6)

and of the constitutive behavior of the respective undamaged material, which is expressed as

P̂ = P̂ (F(t); Z(τ), τ ∈ [0 t]) . (7)

A typical stress-strain curve σ = σ(ε) of an amorphous glassy polymer exhibits multiple stages: elastic,

pre-peak non-linearity, post-peak softening, rehardening, and failure, see Fig. 1a. The modeling strategy to

capture these ingredients is schematically shown for the 1-dimensional case in Fig. 1b. From the effective

stress-strain curve σ̂ = σ̂(ε), the softening stage is modeled using a softening variable denoted by Ds. The

evolution of Ds obeys a saturation law, and tends to Ds∞ when strains increase. When Ds reaches its
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saturation value, the rehardening stage sets in since the hardening of the undamaged part is still developing.

As a result, the evolution of Ds does not lead to the material failure. Therefore the onset of the failure stage

is assessed by a failure criterion. After the onset of failure, the stress decrease is modeled using an internal

variable, so-called failure variable, which is denoted by Df . The value of Df ranges from 0 at the onset

of failure to 1, when final failure occurs. Thus, in order to capture the multi-stage behavior of amorphous

glassy polymers, two distinct softening variables (Ds and Df ) are used so that Eq. (5) is rewritten as

P = (1−Ds)(1−Df )P̂ . (8)

By referring to Eq. (5), the softening variable D can be expressed by

D = 1− (1−Ds)(1−Df ) = Ds +Df −DsDf . (9)

The constitutive relation (4) is now defined by the evolution of Ds and of Df as

Ḋf,s = Df,s (Df,s,F(t); Z(τ), τ ∈ [0 t]) , (10)

and by the constitutive behavior of the undamaged material, which is still specified by Eq. (7).

Following Eqs. (10), the actual values of Ds and of Df at each material point depend on the actual

strain and the strain history at that point, so that the relying modeling strategy is locally described. An

important issue of a local CDM is the loss of solution uniqueness when strain softening occurs. The strain

softening leads to ill-posed boundary value problem, pathological localization, and mesh dependent numerical

solutions. These problems can be avoided using the non-local implicit approach pioneered by Peerlings et al.

(1996). In this non-local model, some internal variables ϕ, which can be the strain, the accumulative plastic

strain, a damage indicator, etc., are considered in a weighted average form, so-called non-local variables ϕ̄,

over a characteristic volume Vc at the material point X. This allows taking into account the influence of the

neighboring material points. One has

ϕ̄ (X) =
1

Vc

∫
Vc

ϕ (Y) θ (r) dΩ , (11)

where r = Y − X is the radius vector, where Y denotes the position of a point inside the characteristic

volume Vc in the material coordinate, and where θ (r) is the weight function, which reflects the influence of

neighboring material points and satisfies

1

Vc

∫
Vc

θ dΩ = 1 . (12)

After some mathematical manipulations, Eq. (11) leads to a Helmholtz-type equation (Peerlings et al., 1996,

2001)

ϕ̄− l2∆0ϕ̄ = ϕ . (13)

8



The non-local variable ϕ̄ is given by an implicit form from its local counterpart leading to a new boundary

value problem. In Eq. (13), l is the characteristic size of the material. This non-local variable ϕ̄ is associated

to the softening variable D, whose evolution depends on the evolution of the non-local variable ϕ̄ via a general

rate form

Ḋ = D (D,F(t), χ(t); Z(τ), τ ∈ [0 t]) χ̇ , (14)

where Z is a vector containing the undamaged material internal variables and where χ is a monotonically

increasing non-local variable

χ(t) = max [χ0, ϕ̄(τ) ; 0 ≤ τ ≤ t ] . (15)

In the last equation, χ0 is the onset of the damage evolution. The purpose of Eq. (15) is to define the onset

and the irreversibility of the damaging process.

In this work, the softening and the failure variables are considered independently. The implicit non-local

formulation described in Eq. (13) is applied not only to Ds but also to Df in order to avoid the problem

of loss of solution uniqueness, which can occur for both the softening and failure stages. This results in an

implicit non-local formulation for the softening variable (with a subscript s)

ϕ̄s − l2s∆0ϕ̄s = ϕs , (16)

Ḋs = Ds (Ds,F(t), χs(t); Z(τ), τ ∈ [0 t]) χ̇s , and (17)

χs(t) = max [χs0, ϕ̄s(τ) ; 0 ≤ τ ≤ t ] , (18)

and in an implicit non-local formulation for the failure variable (with a subscript f)

ϕ̄f − l2f∆0ϕ̄f = ϕf , (19)

Ḋf = Df (Df ,F(t), χf (t); Z(τ), τ ∈ [0 t]) χ̇f , and (20)

χf (t) = max [χf 0, ϕ̄f (τ) ; 0 ≤ τ ≤ t ] . (21)

In Eqs. (16, 19), ls and lf are the characteristic sizes of the softening and of the failure phenomena,

respectively. The non-local implicit formulation expressed in Eqs. (16, 19) is completed by natural boundary

conditions (Peerlings et al., 1996)

∇0ϕ̄k ·N = 0 on ∂B0 with k = s, f . (22)

The selection of the local variables for the softening and failure stages as well as the expression of Ds and

Df are discussed in Section 3.2 after having described the undamaged material law in Eq. (7) in Section

3.1. The weak form and the finite element resolution of the strong form stated in Eqs. (1, 16, 19) with the

boundary conditions (2, 3, 22) are detailed in Appendix A.
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3. Constitutive model

This section presents the details of the constitutive model able to capture the multi-stage behavior of

glassy amorphous polymers. By using non-local formulations, the evolution of softening variables is uncou-

pled from the constitutive relation of the undamaged part. First, the viscoelastic-viscoplastic constitutive

law specified in Eq. (7) is detailed. Then the local variables ϕs and ϕf for the softening and failure stages

are respectively defined. Next the evolution laws (17) and (20) of the softening variables respected with

their respective non-local variables are provided. Finally, the constitutive model and the relevant material

parameters are summarized.

3.1. Viscoelastic-viscoplastic constitutive model

3.1.1. Kinematics

At time t, the position x of the material particle in the current configuration B is a 2-point mapping

of the position X of this material particle in the reference configuration B0, at time t = 0. This 2-point

mapping is expressed under the form x = x(X, t). The deformation gradient is then defined by

F =
∂x

∂X
, (23)

with its Jacobian J = det F > 0.

Following the standard multiplicative decomposition used in viscoelastic-viscoplastic materials, the de-

formation gradient F is decomposed into a viscoelastic and a viscoplastic parts (Moran et al., 1990) as

follows

F = Fve · Fvp , (24)

where Fve and Fvp represent respectively the viscoelastic and viscoplastic deformation gradients. The right

Cauchy strain tensors are given by

C = FT · F , Cve = FveT · Fve , C = FvpT ·Cve · Fvp . (25)

From the deformation gradient decomposition, the viscoplastic spatial gradient of velocity is defined by

Lvp = Ḟvp · Fvp−1 . (26)

Lvp can be decomposed into its symmetric part Dvp, so-called viscoplastic strain rate tensor and its anti-

symmetric part Wvp, so-called viscoplastic spin tensor, such that

Lvp = Dvp + Wvp ,Lvp =
1

2

(
Lvp + LvpT

)
, and Wvp =

1

2

(
Lvp − LvpT

)
. (27)

By assuming an irrotational viscoplastic flow, Wvp = 0, and Eq. (27) becomes

Dvp = Lvp = Ḟvp · Fvp−1 , (28)

10



from which the plastic evolution can be determined as

Ḟvp = Dvp · Fvp , (29)

with Dvp specified through the viscoplastic flow rule, which is detailed later.

3.1.2. Logarithmic strain and stress measures

The strain measures are defined using the logarithmic operator. The total strain and viscoelastic part

are respectively defined by

E =
1

2
ln C , and Eve =

1

2
ln Cve . (30)

The material model is based on an hyperelastic formulation assuming the existence of an elastic potential

Ψ(Eve), which depends only on the viscoelastic strain part. The conjugated stress measures are defined

from this potential as

Ψ̇ = κ̂ : Lve = τ̂ : Ėve , (31)

where κ̂ is the effective Kirchhoff stress and where τ̂ is the effective stress measure conjugated to the

logarithmic strain Eve. From Eq. (31), one has

κ̂ = 2Fve · ∂Ψ

∂Cve
· FveT = Fve−T · τ̂ · FveT . (32)

As demonstrated by Eterovic and Bathe (1990), the stress measure conjugated to the viscoelastic logarithmic

strain (denoted by τ̂ ) corresponds to the Kirchhoff stress (denoted by κ̂) expressed in the viscoelastic

corotational space. The stress measure τ̂ is then called the effective corotational Kirchhoff stress.

Finally, the effective first Piola-Kirchhoff stress P̂, which is conjugated to the deformation gradient F,

is estimated from the Kirchhoff stress and the deformation gradient by the relation

P̂ = κ̂ · F−T = 2Fve · ∂Ψ

∂Cve
· Fvp−T = Fve−T · τ̂ · Fvp−T . (33)

3.1.3. Viscoelastic part

The viscoelastic constitutive relation is based on an hyperelastic formulation under the assumption that

an elastic potential function exists. The viscoelastic behavior is modeled by the generalized Maxwell model

containing N + 1 springs and N dashpots as shown in Fig. 2. This allows defining the total viscoelastic

potential (Simo, 1987) from potential and dissipation functions on each branch as

Ψ (Eve; q1, ...,qN ) = Ψ∞ (Eve) +

N∑
i=1

[Ψi (Eve) + Υi (Eve; qi)] , (34)
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...

Figure 2: Springs/dashpots network of the generalized Maxwell model.

where Ψi with i = ∞, 1, ..., N are the elastic potentials of the springs, where Υi with i = 1, ..., N are the

dissipating functions of the dashpots, and where qi with i = 1, ..., N are internal variables governing the

viscoelastic process. The bi-logarithmic potential function is used for the spring

Ψi(C
ve) =

Ki

2
ln2 Jve +Gi (dev Eve) : (dev Eve) with i =∞, 1, ..., N , (35)

and the quadratic dissipating function is considered for the dashpot (Simo, 1987)

Υi (Eve,qi) = −qi : Eve +

[
1

18Ki
(tr qi)

2
+

1

4Gi
dev qi : dev qi

]
with i = 1, ..., N . (36)

In Eqs. (35, 36), Ki and Gi with i =∞, 1, ..., N are respectively the bulk and shear moduli of the materials.

The viscoelastic effect is considered in both volumetric and deviatoric parts through the internal variables

qi with i = 1, ..., N . The evolution of qi is characterized by a retardation action (Simo, 1987) as follows

dev q̇i =
2Gi
gi

dev Eve − 1

gi
dev qi , and (37)

tr q̇i =
3Ki

ki
tr Eve − 1

ki
tr qi , (38)

where gi and ki are the retardation characteristic times for the deviatoric and volumetric parts, respectively.

From Eq. (34), the effective corotational Kirchhoff stress can be estimated by

τ̂ =
∂Ψ

∂Eve
= τ̂ 0

∞ +

N∑
i=1

(
τ̂ 0
i − qi

)
, (39)

where

τ̂ 0
i =

∂Ψi (Eve)

∂Eve
= Kitr EveI + 2Gidev Eve with i =∞, 1, ..., N . (40)

The system of rate equations (37) and (38) leads the resolution of the qi internal variable under simple

convolution integrals

dev qi =
2Gi
gi

∫ t

−∞
exp

(
− t− s

gi

)
dev Eve(s) ds , and (41)

tr qi =
3Ki

ki

∫ t

−∞
exp

(
− t− s

ki

)
tr Eve(s) ds . (42)
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Substituting Eqs. (41, 42) into Eq. (39) leads to the solution of the effective corotational Kirchhoff stress

dev τ̂ =

∫ t

−∞
2G(t− s) :

d

ds
dev Eve(s) ds , and (43)

p̂ =
1

3
tr τ̂ =

∫ t

−∞
K(t− s) d

ds
tr Eve(s) ds , (44)

where

G(t) = G∞ +

N∑
i=1

Gi exp

(
− t

gi

)
, and K(t) = K∞ +

N∑
i=1

Ki exp

(
− t

ki

)
. (45)

The effective corotational Kirchhoff stress is estimated from its deviatoric and volumetric parts by

τ̂ = dev τ̂ + p̂I . (46)

The effective first Piola-Kirchhoff stress is thus estimated using Eq. (33) as

P̂ = Fve · (τ̂ : L) · Fvp−T , (47)

where

L =
∂ ln Cve

∂Cve

∣∣∣
Cve

. (48)

Note that as the computation of the logarithmic operator involves approximations, its derivatives ought to

account for those approximations; that explains the use of L instead of Cve−1, see the implementation in

Appendix B.

3.1.4. Viscoplastic part

The viscoelastic region is limited by a pressure-sensitive yielding condition, which is detailed in this

section. The yield function F is expressed in terms of the effective corotational Kirchhoff stress τ̂ instead

of the effective Kirchhoff stress κ̂. That is argued as the yield function is often expressed in terms of the

stress invariants which are identical for τ̂ and κ̂, while the numerical implementation with the corotational

Kirchhoff stress can be easily performed thanks to the simple relation between the corotational Kirchhoff

stress τ̂ and the elastic logarithmic strain part Eve in Eq. (46).

The viscoplastic behavior of amorphous glassy polymers is governed by a non-associated Perzyna-type

viscoplastic flow rule (Perzyna, 1971), which can be expressed by the following relation

Dvp =
1

η
〈F 〉

1
p Q , (49)

where Dvp is the visco-plastic strain rate as defined in Eq. (28), F is the yield function, η is the viscosity

parameter, p is the rate sensitivity exponent, 〈•〉 denotes the McAuley brackets defined by 〈F 〉 = 1
2 (F + |F |),

and where Q is the normal to the plastic flow potential

Q =
∂P

∂τ̂
. (50)
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In this last equation, P is the flow potential. In this work, the non-associate flow rule is assumed, F 6= P in

Eqs. (49, 50). The viscoplastic consistency parameter is defined from Eq. (49) as

λ =
1

η
〈F 〉

1
p , (51)

from which, in the viscoplastic range, one can define a new yield condition

F̄ = F − (ηλ)p ≤ 0 . (52)

The condition (52) is a generalized yield condition for rate-dependent materials.

Figure 3: Distinct regions considering in the viscoelastic-viscoplastic model.

The conceptual representation of the current viscoelastic-viscoplastic model is shown in Fig. 3. Below

the plastic limit characterized by F < 0, the material obeys the viscoelastic behavior, in which both F and

F̄ are equivalent. When plasticity occurs, the yield surface is extended by a term depending on the strain

rate. A generalized version of the Kuhn-Tucker condition is used, with

λF̄ = 0 , λ ≥ 0 , and F̄ ≤ 0 . (53)

The rate-independent case can be simply recovered by constraining the viscosity parameter η = 0, which

corresponds to no viscosity effect. In this formulation, the viscoelastic region always exists and is limited

by the yield function at zero strain rate (denoted by F in this work). The details of the yield function and

flow potential function are given in the following.

Yield function: In this work, a generalized version of the Drucker-Prager yield function is considered,

so that the tension-compression asymmetry is employed. The yield function is expressed in terms of the

combined stress tensor denoted by φ, which is defined by

φ = τ̂ − b , (54)

where b is the corotational backstress tensor. The Drucker-Prager yield function is generally expressed by

a linear combination of the first and second invariants of the combined stress tensor, such as

F (φ) = a2φe − a1φp − a0 , (55)
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where

φp =
1

3
trφ and φe =

√
3

2
devφ : devφ . (56)

In this work, the Drucker-Prager yield function (55) is enhanced with an exponent on the octahedral term,

yielding

F (φ) = a2 (φe)
α − a1φp − a0 , (57)

where the three coefficients a2, a1, a0 are functions of the equivalent plastic strain in order to model the

evolution of the yield surface due to the isotropic hardening. Because of two stress invariants (pressure and

von Mises equivalent stress), these three coefficients are determined from two yielding conditions at two

distinct pressure states. Each yielding condition can be chosen either from simple loading cases (uniaxial

tension, uniaxial compression, pure shear, pure pressure) or from a general loading case, in which the pressure

and von Mises stress at the yielding condition can be derived. In this work, uniaxial compressive and uniaxial

tensile yielding conditions are adopted but other cases can be easily derived. Under compressive and tensile

uniaxial loading conditions, one hasa2 (σc)
α − a1

−σc
3 − a0 = 0

a2 (σt)
α − a1

σt
3 − a0 = 0

, (58)

where σc and σt are the current compressive and tensile flow stresses, respectively. In this work, the

compressive and tensile flow stresses are considered as being functions of the equivalent plastic strain,

denoted by γ. The evolution of the equivalent plastic strain γ during plastic deformations is provided after

defining the plastic flow potential in this section. In terms of the current compressive and tensile flow stresses

(σc and σt), the homogeneous system of equations (58) results intoa1 = 3 (σt)
α−(σc)

α

σc+σt
a2

a0 = (σt)
ασc+(σc)

ασt
σc+σt

a2

. (59)

An arbitrary non-zero value of a2 can be used as a normalization value of the yield function (57). By

choosing a2 = 1
σαc

and defining the tension-compression flow asymmetry m by

m =
σt
σc
, (60)

one finally has

a2 =
1

σαc
, a1 = 3

mα − 1

m+ 1

1

σc
, and a0 =

mα +m

m+ 1
. (61)

The convexity of the yield function (57) implies that its Hessian, which is given by

∂2F

∂τ̂∂τ̂
= a2α (φe)

α−1 ∂2φe
∂τ̂∂τ̂

+ a2α (α− 1) (φe)
α−2 ∂φe

∂τ̂
⊗ ∂φe

∂τ̂
, (62)
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as the second derivative of the pressure term vanishes, remains positive semidefinite for all plastic states.

The Hessian of the von Mises equivalent stress ( ∂
2φe

∂τ̂∂τ̂ ) is positive semidefinite as demonstrated in Bigoni

and Piccolroaz (2004). The dyadic tensor ∂φe
∂τ̂ ⊗

∂φe
∂τ̂ is also positive semidefinite. As a result, the positive

semidefinite condition of the Hessian following Eq. (62) is always satisfied when considering α ≥ 1 since the

values of a2 and of φe are always positive. In this work, the value of α ≥ 1 is used in order to ensure the

convexity of the yield surface for all values of the equivalent plastic strain.

As the yield condition (57) is expressed in terms of the corotational Kirchhoff stress τ̂ , the yield stresses

σc and σt and backstress b are also Kirchhoff quantities in the viscoelastic corotational space, which differ

from the Cauchy quantities by the deformation Jacobian. The use of σc and σt allows considering isotropic

hardening effects, while the kinematic hardening one can be captured through the backstress b.

In Eq. (57), an arbitrary value of the exponent α can be used leading to a new class of yield surfaces,

so-called power yield surfaces. When α = 1 this yield function (57) degenerates to the classical Drucker-

Prager function and when α = 2 it degenerates to the paraboloidal case as considered by Melro et al.

(2013). Without considering the strain rate effects, the results with different values of α are presented in

Fig. 4 and are compared to the experimental results. It shows that the proposed powered-enhanced yield

function captures better the pressure-dependency of the experimental results, while the Drucker-Prager and

the paraboloidal cases overestimate the results.
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α=1 (Drucker−Prager)
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α=3.5
α=5

Exp. Lesser 1997 (0.0028 min
−1

)

Exp. Hinde 2005 ( 0.1481 min
−1

)

Exp. Sauer 1977

Figure 4: Power yield function (57) is depicted for different power values α, and with m = 0.75. The results are compared

with the experimental results extracted from the works of Lesser and Kody (1997), of Hine et al. (2005), and of Sauer (1977)

for epoxy resins. In this figure, σV M is the von Mises equivalent stress, p is the hydrostatic stress.

Flow potential: Because the viscoplastic behavior of the polymers is complex in general, a non-

associated flow rule is often assumed (Melro et al., 2013; Abu Al-Rub et al., 2015; Vogler et al., 2013).

Therefore, the evolution of the plastic flow is not determined by the gradient of the yield function (associ-

ated flow rule), but by the gradient of a plastic flow potential P . The choice of the non-associated flow rule

allows correctly predicting the Poisson effect during the plastic process using suitable parameters of this
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flow potential. In this work, a quadratic function is used as

P = φ2
e + βφ2

p , (63)

where φe and φp are given in Eq. (56) and where β is a material parameter. The use of the quadratic flow

potential allows capturing the volumetric plastic deformation with a constant plastic Poisson ratio (Melro

et al., 2013)

νp =
9− 2β

18 + 2β
. (64)

The plastic Poisson ratio νp is a material constant defining the value of β. The equivalent plastic deformation

γ̇ is defined from the viscoplastic rate tensor expressed in Eq. (49) by the following relation (Melro et al.,

2013)

γ̇ = k
√

Dvp : Dvp , (65)

where

k =
1√

1 + 2ν2
p

. (66)

In case of an incompressible flow rule, νp = 0.5, and the classical value of k =
√

2
3 is recovered.

Hardening effects: The kinematic hardening is modeled through the corotational backstress tensor b.

The evolution of backstress tensor b is specified by

ḃ = kHb(γ)Dvp with b(γ = 0) = 0 , (67)

where k is given in Eq. (66), and where Hb is the kinematic hardening modulus, which depends on the

equivalent plastic strain. In terms of equivalent values, Eq. (67) becomes

ḃe = Hbγ̇ , with ḃe =
√

ḃ : ḃ . (68)

The isotropic hardening is considered using distinctive compressive and tensile yield stresses, which can

be independently introduced in the model as follows

σ̇c = Hc(γ)γ̇, with σc(γ = 0) = σ0
c and (69)

σ̇t = Ht(γ)γ̇, with σt(γ = 0) = σ0
t , (70)

where Hc and Ht are the compressive and tensile isotropic hardening moduli, respectively.

All hardening moduli (including tensile isotropic, compressive isotropic, and kinematic) are defined as
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functions of the equivalent plastic strain by the following general forms

Ht =

Mt∑
i=0

tiγ
i +H0

t exp (−Ktγ) , (71)

Hc =

Mc∑
i=0

ciγ
i +H0

c exp (−Kcγ) , and (72)

Hb =

Mb∑
i=0

βiγ
i +H0

b exp (−Kbγ) , (73)

where Mt, Mc, Mb are the polynomial orders and where ti with i = 0, ...,Mt, ci with i = 0, ...,Mc, βi with

i = 0, ...,Mb, H
0
t , H0

c , H0
b , Kt, Kc and Kb are material parameters. In these equations, the polynomial

terms are used to model the hardening, while the exponential terms are considered to capture the saturation

state. The kinematic hardening modulus is mandatory to capture the Bauschinger effect upon unloading.

The use of two independent yield stresses at two pressure states (here uni-axial compressive and tensile yield

stresses) allows capturing the asymmetry in the compressive-tensile plastic flow behavior, which is present

in glassy polymers as discussed by Poulain et al. (2014).

Viscoplastic extended yield condition: Using Eqs. (49, 50, 51, 63), Eq. (65) becomes

γ̇ = kλ

√
6φ2

e +
4

3
β2φ2

p . (74)

Therefore, the viscoplastic extended yield function expressed in Eq. (52) is rewritten

F̄ =

(
φe
σc

)α
− 3

mα − 1

m+ 1

φp
σc
− mα +m

m+ 1
−

 ηγ̇

k
√

6φ2
e + 4

3β
2φ2
p

p

≤ 0 . (75)

The rate dependency in the plastic region is taken into account with the presence of the plastic equivalent

strain rate in the extended yield surface (75).

Considering a uniaxial test, one has at the plasticity onset φe = |σ|, φp = ± |σ|3 , and σc = σ0
c , where the

notations + and − correspond to the tension and compression cases, respectively. The initial yield stress

value with the strain effects is thus estimated from Eq. (75) by solving the equation

fα − mα − 1

m+ 1
(±f)− mα +m

m+ 1
−

 z

kf
√

6 + 4
27β

2

p

= 0 , (76)

where

f =
|σ|
σ0
c

and z =
ηγ̇

σ0
c

. (77)

The solution of Eq. (76) leads to the relationship f = f(z), which describes the dependence of the initial

yield stress on the plastic equivalent strain rate. This relation is depicted in Fig. 5 for different values of

the yield exponent α and of the rate sensitivity exponent p, with m = 0.75 and β = 0.3. The increase of
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Figure 5: Dependency of the initial yield stress on the equivalent plastic strain rate for (a) fixed p = 0.5, various α and (b)

various p, fixed α = 4.

the yield stress with the strain rate is clearly captured for different values of α and p. Suitable values of α

and p are then calibrated using experimental data. When the plastic strain rate tends to 0, f tends to 1 in

compression and to m = 0.75 in tension as for the rate independent case.

3.2. Softening and failure models

In the non-local damage continuum described in Section 2, the local variables ϕs and ϕf must be defined,

so that their non-local counterparts can be estimated from the implicit gradient formulations (16) and (19).

As the softening and failure phenomena occur after the plasticity onset, the evolution of local variables (ϕs

and ϕf ) are assumed to be governed by the plastic process through the equivalent plastic strain rate. Finally,

the evolution laws (17) and (20) of the softening variable Ds and of the failure variable Df depending on

their respective non-local variables and internal parameters have to be defined.

3.2.1. Softening model

In the physically-based constitutive models, as proposed by Boyce et al. (1994); Govaert et al. (2000)

e.g., the post-peak softening is modeled by modifying the plastic flow through the saturated evolution of an

internal variable. In this work, a phenomenological-based model of the softening variable Ds is assumed.

The evolution of the local variable ϕs is directly derived from the equivalent plastic strain rate following

ϕ̇s = γ̇ and ϕs(t = 0) = 0 . (78)

By the assumption that the softening variable Ds is governed by ϕ̄s, Eq. (17) is rewritten in a general

saturation law

Ḋs = As (Ds∞ −Ds) χ̇s , with χs(t) = max [χs0, ϕ̄s(τ) ; 0 ≤ τ ≤ t ] , (79)
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where Ds∞ is the saturation damage value, χs0 is the onset of the softening stage, and where As either

depends on χs and on the internal variables, or can be considered as a constant, as suggested by Govaert

et al. (2000). In this work, As is assumed to depend on the related non-local variable ϕ̄s through the

following relation

As = Hs (χs − χs0)
ζs , (80)

where Hs is the softening slope and where ζs is the softening exponent. With constant values of Hs and of

ζs, the rate form (79) can be reformulated in an explicit form as

Ds = Ds∞

[
1− exp

(
Hs

ζs + 1
(χs − χs0)

ζs+1

)]
. (81)

The use of ζs > 0 leads to Ds (χs = χs0) = 0 and Ḋs (χs = χs0) = 0, which allows modeling the smooth

post-peak softening process observed in the stress-strain curves of glassy polymers.

3.2.2. Failure model

Besides the yield criterion, the onset of the failure stage should be predicted by a failure criterion. The

material strength of polymers is known to be dependent on the hydrostatic pressure as shown through

various experimental results, see e.g. in Fiedler et al. (2001); Hine et al. (2005) for epoxy resins. The failure

criterion must thus be able to capture the pressure effect. This can be achieved either by a strain-based

criterion assuming the equivalent (plastic) strain at the onset of failure as a function of the stress triaxiality

defined by the ratio between the pressure and the von Mises equivalent stress (Yang et al., 2012) or by a

stress-based criterion related to the pressure (Melro et al., 2013). In this work, the onset of the failure stage

is characterized by a pressure-dependent failure criterion based on stress invariants in order to correctly

represent the pressure-sensitive failure process. This criterion is written under a general form (Melro et al.,

2013) as follows

Ff = Φf

(
τ̂ , X̂c, X̂t

)
− r ≤ 0 , (82)

where Φf is the failure activation function and where r is the internal variable defining the evolution of the

failure surface. The activation function Φf is assumed to be related to the effective corotational Kirchhoff

stress τ̂ , to X̂c, and to X̂t, which are respectively the material strengths in compression and tension, which

depend on strain rates (Gerlach et al., 2008). The internal variable r has a positive time derivative and is

initially equal to 0; the evolution of r obeys the Kuhn-Tucker condition

ṙ ≥ 0 , Ff ≤ 0 , ṙFf = 0 . (83)

In this work, a power activation function is proposed in the form

Φf = b2 (τ̂e)
αf − b1p̂− b0 , (84)
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where b0, b1 ,and b2 are three failure coefficients, αf is the failure exponent, and where

τ̂e =

√
3

2
dev τ̂ : dev τ̂ and p̂ =

tr τ̂

3
. (85)

The coefficients b0, b1, and b2 can be determined from the compressive and tensile material strengths,

denoted by X̂c and X̂t respectively. Toward this end, the activation function (84) is rewritten as

Φf =

(
τ̂e
τ̂ef

)αf
+

p̂

p̂f
− 1 , (86)

where

τ̂ef = X̂c

(
m
αf
f +mf

mf + 1

) 1
αf

and (87)

p̂f = X̂c

m
αf
f +mf

3
(

1−mαf
f

) . (88)

In the last equations, mf = X̂t/X̂c > 0 and characterizes the tension-compression failure asymmetry. In

glassy polymers, the tensile failure occurs at a smaller stress compared to the compressive case, so that

mf < 1.

With the proposed criterion of the onset of failure, the material starts to be degraded under a pure

shear stress τ̂ef or under an hydrostatic pressure p̂f > 0 as the compressive failure stress is larger than the

tensile one, mf < 1. This means that under a pure hydrostatic condition, the material will only fail under a

positive pressure (tension state). Figure 6 represents the different failure surfaces depending on the values

of the failure exponent αf and compares them to the maximal shear stress criterion. Following the works of

Melro et al. (2013); Fiedler et al. (2001), a paraboloidal failure surface, which corresponds to αf = 2, can

be used for epoxy resins.
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Figure 6: Dependence of the initial failure surface with the failure exponent αf on the strain rate and comparison with the

maximal shear stress criterion.
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During the failure process defined by the failure condition (82), the evolution of the local variable ϕf for

the failure variable is given by

ϕ̇f =

γ̇ if ṙ > 0

0 if ṙ = 0

, (89)

with an initial condition ϕf (t = 0) = 0. The evolution of the failure variable Df following Eq. (20) obeys

the power law proposed by Brekelmans et al. (1992), which is given by

Ḋf = Hf (χf )
ζf (1−Df )

−ζd χ̇f , with χf (t) = max [χf 0, ϕ̄f (τ) ; 0 ≤ τ ≤ t ] , (90)

where Hf > 0, ζf , and ζd > 0 are the material parameters and where χf 0 is the onset of the failure stage.

Assuming ζd 6= −1, Eq. (90) can be integrated leading to an an explicit form

Df =


0 if χf < χf 0

1−
[
1−Hf

ζd+1
ζf+1

(
χ
ζf+1
f − χf

ζf+1
0

)] 1
ζd+1

if χf 0 ≤ χf ≤ χf c

Df c if χf > χf c

. (91)

By defining the critical value χf c such that Df (χf c) = Df c ≤ 1, the parameter Hf can be written as

Hf =
ζf + 1

ζd + 1

1− (1−Df c)
ζd+1

χf
ζf+1
c − χf

ζf+1
0

. (92)

If χf > χf c, the critical state is followed by Df = Df c. A plateau stress is considered for this stage as the

material is completely damaged.
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3.3. Summary of the constitutive equations

The proposed viscoelastic-viscoplastic-damage constitutive model can be described by the following set

of equations:

F = Fve · Fvp

Eve = 1
2 ln

(
FveT · Fve

)
τ̂ = dev τ̂ + p̂I =

∫ t
−∞

[
2G(t− s) : d

dsdev Eve +K(t− s) d
ds tr EveI

]
ds

Plasticity onset verification: F ≥ 0

λF̄ = 0 , λ ≥ 0 and F̄ ≤ 0

Dvp = λQ

ḃ = kHbD
vp , σ̇c = Hcγ̇ , σ̇t = Htγ̇

P̂ = Fve · (τ̂ : L) · Fvp−T

Ḋs = Hs (χs − χs0)
ζs (Ds∞ −Ds) χ̇s

Failure onset verification: Ff ≥ 0

Ḋf = Hf (χf )
ζf (1−Df )

−ζd χ̇f

P = (1−Ds)(1−Df )P̂

. (93)

The resolution of the system of equations (93) follows the predictor-corrector scheme, see Appendix B for

details.

Table 1 summarizes the material parameters entering the constitutive model. Examples of calibration

tests necessary for their identification are also listed. In the viscoelastic regime, the shear and bulk moduli

are expressed by Prony series of time dependent functions as detailed in Section 3.1. In the viscoplastic

regime, the related constitutive parameters consist of all essential parameters of a conventional computational

plasticity model (de Souza Neto et al., 2011), from which the rate effect is enhanced following a Perzyna-

type flow rule with only two constants (viscosity η and rate-sensitivity exponent p). All hardening moduli

(including tensile isotropic, compressive isotropic, and kinematic) are defined as functions of the equivalent

plastic strain in the set of Eqs. (71-73).

Table 1 lists examples of calibration tests necessary for the identification of the material parameters of

the constitutive model. Except for the yield exponent α and the failure exponent αf , which need different

tests at different values of the stress triaxiality to capture the pressure dependency, experimental tests under

uniaxial loading conditions are chosen in the identification plan of the other constitutive parameters since

the current constitutive model is formulated in terms of the yield and failure stresses for these loading

conditions. Moreover, experimental specimens can be loaded until failure to obtain the full range of the

stress-strain curve, directly resulting into the yield and failure stresses. The viscoelastic parameters can
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Table 1: The material parameters of the developed constitutive model.

Stage Description Notations Identification tests

Viscoelasticity Time-dependent functions G, K Uniaxial tests at different

strain rates

Viscoplasticity Rate-effect constants η, p Uniaxial tests at different

strain rates

Yield exponent constant α Monotonic tests at differ-

ent pressure states (differ-

ent values of the stress tri-

axiality)

Plastic Poisson ratio νp One uniaxial test at an

arbitrary constant strain

rate

Initial yield stresses

Hardening functions of the

equivalent plastic strain

σ0
t , σ0

c

Ht, Hc, Hb

One uniaxial tensile test

and one uniaxial compres-

sive test at an arbitrary

constant strain rate

Saturation softening Constants χs0, Ds∞, ζs, Hs One uniaxial test at an

arbitrary constant strain

rate

Failure Constants χf 0, ζd, ζf , Hf One uniaxial test at an

arbitrary constant strain

rate

Failure exponent constant αf Monotonic tests with dif-

ferent pressure states (dif-

ferent values of the stress

triaxiality)

Material strengths as

functions of strain rates

X̂t, X̂c Uniaxial tests at different

strain rates in tension and

in compression
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be determined from uniaxial tests at different strain rates at small strain levels, where the stress-strain

relation is assumed to be viscoelastic. The parameters governing strain rate effects in the viscoplastic regime

(viscosity η and rate-sensitivity exponent p) can be determined from uniaxial tests at different strain rates.

The plasticity constants (νp, σ
0
t , and σ0

c ), hardening functions (Ht, Hc, and Hb), as well as the saturation

softening constants (χs0, Ds∞, ζs, and Hs) are rate-independent and can be estimated from two tests, one

in compression and one in tension at an arbitrary constant strain rate by minimizing the error between

the numerical prediction and the experimental response. The tensile and compressive material strengths

related to the strain rates are directly obtained from performing uniaxial tensile and compression tests until

reaching failure at different strain rates. As the failure behavior is assumed to be rate-independent, the

related parameters (χf 0, ζd, ζf , and Hf ) can be estimated from one uniaxial test at an arbitrary constant

strain rate. In the following sections, the current constitutive model is used to model the complex behavior

of the highly cross-linked RTM6 epoxy resin at the room temperature (≈ 20oC). The tested specimens fail

suddenly so that the failure behavior cannot be followed. This stage is then idealized in order to model the

progressive failure behavior in the context of the non-local damage continuum.

As a purely mechanical problem is formulated in this work, all material parameters are considered at a

fixed temperature and isothermal processes are assumed so that the heat generation and thermal conduction

are neglected. However, these effects can be taken into account in a fully thermo-mechanically-coupled

simulation as considered in Anand et al. (2009); Ames et al. (2009) showing a significant influence on the

stress-strain behavior. The heat generation and thermal conduction will be accounted for in a future work.

4. Experimental parameters identification

In this section, the proposed viscoelastic-viscoplastic-damage constitutive model is identified based on a

wide set of experimental data of the highly cross-linked RTM6 epoxy resin at the room temperature (≈ 20oC).

This highly cross-linked thermoset possesses a high density of reticulation points which affect the physical

properties, as discussed by Nielsen (1969); van Melick et al. (2003). Consequently, the thermo-mechanical

properties of the tested epoxy resin differ from moderately cross-linked thermosets and from thermoplastics

but the physical origins of the plastic flow, softening, and re-hardening can be similar (Yamini and Young,

1980). However, the highly cross-linked RTM6 epoxy resin prematurely fails under most loading conditions

other than compression (Morelle et al., 2015) while moderately cross-linked polymers can still exhibit some

ductility under tensile and shear loading conditions. Since the proposed constitutive model relies on the

phenomenological consideration, its parameters are identified based on the experimental loading curves by

curve fittings until reaching the failure onset. The failure stage is finally modeled by the progressive failure

model described in Section 3.2.
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4.1. Experimental tests

The uniaxial compression and tensile tests were performed until failure using a screw-driven universal

testing machine. The test specimens were loaded under various constant engineering strain rates (constant

cross-head displacement rates) at room temperature (≈ 20oC). The results in terms of applied force versus

prescribed displacement are converted to true stress- true strain curves according to the following formula

σ =
F

A0

(
1 +

U

L0

)
, and (94)

ε = ln

(
1 +

U

L0

)
, (95)

where A0 and L0 are the initial cross section and initial length of the specimens, σ is the true stress, ε is true

strain, and where F and U are the applied force and prescribed displacement measured from experimental

tests.

The uniaxial compression tests were performed on cylindrical specimens (both length and diameter equal

to 12 mm) with five values of the engineering strain rate ranging from 1.4 10−6s−1 to 1.4 10−1s−1. Teflon

strips were used to reduce the friction between the compressive platens and the specimens. With the use

of Teflon as solid lubricant, specimen barreling can be neglected and the tests can be considered as pure

uniaxial compression. The axial strain is directly obtained from the crosshead displacement corrected for

the machine compliance. The uniaxial tensile tests were carried out using cylindrical dogbone specimens of

gauge length 20 mm and of diameter 9 mm under a constant crosshead displacement rate of 1.1 10−3s−1.

The tensile axial strain is measured using a contact extensometer in the gauge length. The use of a contact

extensometer could trigger premature failure in tension of epoxy samples, and the recourse to Digital Image

Correlation (DIC) or other video-based extensometry method has to be favored for strain measurement

(Poulain et al., 2014). However, in the context of RTM6 resins, no shear banding nor necking could be

observed under tension, mostly due to premature brittle failure before the upper yield stress. Nevertheless

micro-shear banding can occur as an intrinsic material feature in RTM6, which does not necessarily translate

into macro shear-banding. Besides, failure was always observed in the gauge length. As a result, the strain

measurement obtained with the extensometer is thus considered valid. Tensile specimens failed in a brittle

manner reaching only small strains before failure. After showing considerable plastic strains, the compressive

specimens failed abruptly with the generation of a large number of fragments.

4.1.1. Uniaxial compressive tests

The average true stress- true strain curves with different engineering strain rates are shown in Fig. 7a.

The multiple-stage rate-dependent stress-strain behavior is clearly observed.
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Figure 7: Experimental results with constant engineering strain rates at room temperature: (a) uniaxial compression and (b)

uniaxial tensile tests.

4.1.2. Uniaxial tensile test

The obtained average stress-strain curve is shown in Fig. 7b. The brittle fracture is observed without

the presence of the softening and rehardening stages.

4.1.3. Peak and failure stresses
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Figure 8: Compressive peak stress (a) and compressive and tensile failure stresses in terms of the strain rates (b).

The compressive peak stress and uniaxial failure stresses at various engineering strain rates are shown in

Fig. 8a and b. The standard deviation is also reported. A variability is observed for both the compressive

and tensile failure stresses. Fig. 8b suggests that the compressive failure stress is insensitive to strain rate.

The rate insensitive assumption is also considered for the tensile failure stress. With the rate insensitive

assumption, the average values of 210 MPa for the compressive failure stress and of 100 MPa for the tensile

failure stress are used.

In general glassy polymers, the failure process is governed by the competition between the shear-

dominated yielding mechanism in the form of strain localization bands with high plastic deformation and the
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brittle-failure-dominated mechanism driven by the positive maximal principal stress (Estevez et al., 2000).

Particularly in the highly cross-linked epoxy resin, shear yielding was observed at high temperatures while

a premature brittle behavior without any progressive softening is dominant at lower temperatures (Morelle

et al., 2015). Unlike the uniaxial tensile failure stress (100 MPa), which is conducted by the latter, the

uniaxial compressive failure stress (210 MPa) is considered in an homogenized sense following the loading

direction. On the one hand, under compression loading, although the friction between specimens and platens

is minimized using lubricant films, its effect cannot be totally neglected and leads to a non-homogeneous

stress state which is more-pronounced in the regions near the contact surfaces. On the other hand, the real

specimens always possess some kind of defects which make the local stress state far from the pure uniaxial

compression, see Chevalier et al. (2016). As a result, there exist in the specimen critical regions in which

the local positive maximal principal stress and (or) the local shear stress reach their critical values yield-

ing micro-cracks. The propagation of these initiated cracks is controlled by these true failure mechanisms

resulting in the total failure of specimens under compression loading (Morelle et al., 2015). These argu-

ments also explain the large variability on the compressive failure stresses reported in Fig. 8b. Therefore,

the characterization and modeling of the true failure driving mechanisms require a micro-mechanical-based

model considering the micro-structure details, as studied by Chevalier et al. (2016). In the present work,

the failure process based on the compressive and tensile failure stresses is a first rudimentary approach in

which the average behavior of the testing material is phenomenologically introduced by the fact that the

average values over various strain rates and various specimens are used.

The constitutive parameters of the developed material model are summarized in Tab. 1. These constitu-

tive parameters are obtained with a minimum number of experimental tests including compressive loading

conditions under five engineering strain rates and a tensile loading under one engineering strain rate up to

failure. For that purpose, some parameters are taken from the literature: the yield exponent α = 3.5 is con-

sidered as this value results in a better representation of the pressure-dependency in epoxy resins as reported

in Fig. 4; the plastic Poisson ratio νp = 0.3 and the failure exponent αf = 2 are used as considered in Fiedler

et al. (2001); Melro et al. (2013) for epoxy resins. The other parameters are identified from the performed

experimental data. From the rate-dependent uniaxial compression data, the constitutive parameters govern-

ing the strain rate effects (viscoelastic parameters, viscosity parameter, and rate-sensitivity exponent) can

be identified. The isotropic and kinematic hardening moduli as well as the saturation softening are assumed

to be rate-independent, so they can be identified by considering two arbitrary tests with one in compression

and one in tension. As the experimental specimens fail abruptly, the failure stage is therefore idealized in

order to model the progressive failure behavior in the context of the non-local damage continuum.
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Table 2: Viscoelastic parameters for the RTM6 epoxy resin identified from the experimental results

Viscoelastic parameters

Number of Maxwell elements: 4

E∞ = 2450 MPa ν = 0.39

E1 = 380 MPa τ1 = 7000 s

E2 = 190 MPa τ2 = 70 s

E3 = 95 MPa τ3 = 0.7 s

E4 = 48 MPa τ4 = 0.07 s

4.2. Pre-failure material parameters identification

When considering the uniaxial compression and uniaxial tensile tests, the obtained stress-strain curves

are independent of the Poisson ratio, denoted by ν. In general, the Poisson ratio of polymers is shown to

depend on time, stress and temperature (Tschoegl et al., 2002). Thus the Poisson ratio is not the relevant

material parameter and the use of shear and bulk time functions is more appropriate to capture the multi-

axial state of the material behavior (Krairi and Doghri, 2014). As only uniaxial experimental data are

available, the Poisson ratio is assumed to be constant for simplicity. In this work, a Poisson ratio equal to

0.39 (Melro et al., 2013) is considered. For each spring i with i = ∞, 1, ..., N in Fig. 2, the bulk modulus

Ki and shear modulus Gi can be estimated from its Young’s modulus Ei and the Poisson ratio ν, which is

identical for all spring, as follows

Gi =
Ei

2(1 + ν)
and Ki =

Ei
3(1− 2ν)

with i =∞, 1, ..., N . (96)

Moreover, with the assumption that characteristic times for bulk and shear parts are identical, i.e. ki =

gi = τi with i = 1, ..., N , Eqs. (45) become

G(t) =
E(t)

2(1 + ν)
and K(t) =

E(t)

3(1− 2ν)
(97)

where

E(t) = E∞ +

N∑
i=1

Ei exp

(
− t

τi

)
. (98)

The viscoelastic behavior is characterized by the Young’s moduli Ei, i = ∞, 1, ..., N and retardation times

τi, i = 1, ..., N . These material parameters are identified from the uniaxial tests using the simple procedure

proposed by Bódai and Goda (2011). The results obtained for the RTM 6 epoxy resin are detailed in Tab.

2. A weakly viscoelastic behavior is observed as the testing temperature is far from the glass transition

temperature (about 220oC for RTM6).

The material parameters for the yield function are identified from the peak-stress values at various

loading rates using Eq. (75). By assuming that the kinematic hardening stress at peak stress is negligible
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Figure 9: Dependence of the compressive peak stress on the strain rate: theoretical prediction compared to the experimental

results.

Table 3: Yield parameters for the RTM6 epoxy resin identified from the experimental results

Viscoplastic parameters

Yield exponent α = 3.5

Tension-compression yielding asymmetry m = 0.8

Plastic Poisson ratio νp = 0.3

Rate sensitivity exponent p = 0.21

Viscosity parameter (MPa·s) η = 3 104

Compressive peak-stress of the strain rate independent case (MPa) σpc = 100

in comparison with the isotropic hardening stress, Eq. (76) can be used with

f ≈ |σ|
σpc

and z ≈ ηε̇eng
σpc

, (99)

where σpc corresponds to the compressive peak-stress in the rate independent case and where ε̇eng is the

absolute value of the applied engineering strain rate. The constitutive parameters reported in Tab. 3 are

obtained by fitting the compression peak-stress measurements at various strain rates as shown in Fig. 9.

The pre-peak non-linearity and post-peak softening, as well as the rehardening stages are modeled using

both the isotropic and kinematic hardening effects in combination with the softening model. It is assumed

that the strain hardening laws (both isotropic and kinematic) and softening law are strain-rate independent

and depend only on the equivalent plastic strain. Under the assumption that the isotropic hardening stress

is saturated after the peak stress and that the rehardening stage arises from the kinematic hardening, as
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Table 4: Hardening and softening parameters for the RTM6 epoxy resin identified from the experimental results

Saturation softening parameters χs0 = 0 , Ds∞ = 0.2 , ζs = 1 , Hs = 90

Compressive isotropic hardening model (MPa) σc = 48 + 55 [1− exp (−76γ)]

Hc = 4180 exp (−76γ)

Tensile isotropic hardening model (MPa) σt = mσc

Ht = mHc

Kinematic hardening model (MPa) be = γ2
(
170− 440γ + 1100γ2

)
Hb = γ

(
340− 1320γ + 4400γ2

)
assumed by Poulain et al. (2014), the hardening moduli following Eqs. (71-73) can be simplified by

Ht (γ) = H0
t exp (−Ktγ) , (100)

Hc (γ) = H0
c exp (−Kcγ) , and (101)

Hb (γ) =

Mb∑
i=0

βiγ
i , (102)

where H0
t , Kt, H

0
c , Kc, β0, β1,..., and βMb

are material constants. Moreover, the tensile isotropic hardening

stress is related to the compressive one by σt = mσc. By assuming that m is a constant for simplicity with

its value given in Tab. 3, leading to H0
t = mH0

c and Kt = Kc.

With the hardening models (100 - 102) and the softening law (81), the numerical prediction can be

obtained in terms of the hardening and softening parameters. As the analytical resolution of the system of

equations (93) in the uniaxial loading conducted at a constant engineering strain rate is not easily derived,

this system of equations is directly resolved in the finite element analyses using the integration algorithm

described in Appendix B. For this purpose, the experimental result on the uniaxial compressive test at

an engineering strain rate of 1.4 10−1 s−1 is used. The numerical simulations are performed with a finite

element model of a cylinder specimen whose dimensions are the same as in the experimental compression

tests. The boundary conditions are applied to obtained the uniaxial compression state leading to the uniform

resolution. This uniform resolution is independent of the mesh size and directly reflects the local resolution

at a Gauss point. The obtained results in terms of the reaction force- prescribed displacement are converted

into true stress-strain following Eqs. (94, 95). The numerical results are fitted to extract the parameters

reported in Tab. 4.

Based on the constitutive parameters in Tabs. 2, 3 and 4, the stress-strain relationship without failure

stage can be modeled. By performing finite element analyses with specimens and uniaxial loading condi-

tions corresponding to the experimental ones, the numerical predictions are compared to the experimental

results for compression in Figs. 10a, 10b and for tension in Fig. 11. Note that the failure stage has not

been considered yet, the rehardening stage develops. A good agreement is obtained under various loading
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Figure 10: Model predictions compared to the experimental results for compressive stress-strain response of the RTM 6 epoxy

resin at various constant engineering strain rates without considering the failure stage: (a) full strain range and (b) zoom on

the pre-peak strain level.
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Figure 11: Model predictions compared to the experimental result for tensile stress-strain response of RTM 6 epoxy resin at a

constant engineering strain rate of 1.1 10−3 s−1 without considering the failure stage.

conditions. The material behavior will be completed with the failure stage in the next section.

4.3. Failure stage idealization

In the current work, the non-local progressive damage is considered, so that the failure stage can be

idealized by a progressive damage evolution to specify the relation (91). For that purpose, the parameters

characterizing the failure activation function in Eq. (84) must first be provided. As proposed by Melro et al.

(2013); Fiedler et al. (2001), the failure exponent αf = 2, which corresponds to a paraboloid failure surface,

is used in this work. The failure onset criterion is then completed with two failure stresses, defined by the

absolute value of the applied stress leading to the failure state, at two distinct pressure states. As discussed

above, the tensile and compressive failure stresses are assumed to be rate-independent. As the compressive

failure stress is 210 MPa, one has

(1−Ds∞)X̂c = 210 MPa or X̂c = 262.5 MPa . (103)
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As the tensile failure stress takes a value of 100 MPa and the softening variable is small in this strain range,

see Tab. 4, we consider X̂t = 100 MPa.

When the failure criterion is met, the failure stage is characterized using a 3-dimensional finite element

mesh of a cylinder of gauge length 20 mm and of diameter 9 mm as considered in Section 4.1. The uniaxial

tensile loading condition (constant engineering strain rate of 1.1 10−3 s−1) is applied. As described above,

the numerical resolution of the system of equations (93) in the uniaxial loading conducted by a constant

engineering strain rate is obtained by enforcing the uniform resolution using arbitrary large values for the

non-local characteristic lengths. This resolution is independent of the mesh size and reflects the one at a

Gauss point. The numerical predictions with different parameters of the failure softening model (91) are

shown in Fig. 12a, b, and c. The tensile experimental result is also reported. The failure brittleness is more

pronounced with the decrease of χf c, the increase of ζd as well as the increase of ζf .
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Figure 12: Influence of failure softening parameters specifying Eq. (91) on the uniaxial tensile stress-strain behavior: (a) fixed

ζf = 1, ζd = 0.3, various χf c, (b) fixed ζf = 1, various ζd, χf c = 2 10−2, and (c) various ζf , fixed ζd = 0.3, χf c = 2 10−2.

The values of χf 0 = 0 and of Df c = 0.9 are used for all the tests. The tensile experimental result is also reported.

0 0.2 0.4 0.6 0.8
0

50

100

150

200

250

−True strain

−
T

ru
e

 s
tr

e
s
s
 (

M
P

a
)

 

 

1.4 10
−6

 s
−1

 Num.

1.4 10
−4

 s
−1

 Num.

1.4 10
−3

 s
−1

 Num.

1.4 10
−2

 s
−1

 Num.

1.4 10
−1

 s
−1

 Num.

Figure 13: Model predictions of compressive stress-strain response of RTM 6 epoxy resin at various constant engineering strain

rates with failure stage characterized by ζf = 1, ζd = 0.3, χf 0 = 0, χf c = 5 10−2, and Df c = 0.9.

Fig. 13 depicts the numerical predictions under various engineering strain rates using the parameters

reported in Tab. 5. By considering X̂c independent of the strain rate, the failure stage starts at the same
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Table 5: Progressive failure parameters for the RTM6 epoxy resin

Progressive failure parameters

Failure exponent αf = 2.

Tensile strength (MPa) X̂t = 100

Compressive strength (MPa) X̂c = 262.5

Failure softening parameters ζf = 1 , ζd = 0.3 , χf 0 = 0 , χf c = 5 10−2

Critical failure damage Df c = 0.9

stress value. At a given strain value, a larger engineering strain rate leads to a larger stress level, so the

failure stage develops earlier.

The experiment specimens failed abruptly indicating a brittle failure mechanism with a limited dissipation

during cracking. In order to model the progressive failure behavior in the context of the non-local damage

continuum, the failure stage is therefore idealized following Eq. (91). The proposed constitutive law is

used in the context of a Newton-Raphson iterative nonlinear solver. The iterative procedure converges more

difficultly with the increase of the brittleness due to the quick increase of the failure variable. In order to

validate these parameters, another test with a progressive damage behavior is necessary. In this work, the

failure softening parameters reported in Tab. 5 are used.

5. Mesh objectivity

Figure 14: Geometry of the double-notched specimen and boundary conditions in x−y plane. The left boundary is fixed, while

the right boundary is moved with prescribed displacements: ∆̇x = ∆̇y = ∆̇ 1√
2

and ∆x = ∆y = ∆ 1√
2

.

In this section, the 2-dimensional double-notched specimen under a quasi-static combined tensile-shear

loading condition is proposed to demonstrate the mesh objectivity when using non-local implicit gradient

enhanced formulation and verify the damage propagation and localization. The geometry and the boundary

conditions are shown in Fig. 14. The combined loading state is obtained via prescribed displacements in

both horizontal and vertical directions on the right boundary, denoted by ∆x and ∆y respectively. The
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conditions ∆x = ∆y = ∆ 1√
2

with displacement rates ∆̇x = ∆̇y = ∆̇ 1√
2

are considered. The proposed

viscoelastic-viscoplastic-damage constitutive law is used with its parameters identified from Section 4, see

details in Tabs. 2 - 5. The characteristics lengths l2s = l2f = 2 mm2 (Geers, 1997) are used for both the

softening and failure non-local implicit formulations.

(a) (b) (c)

Figure 15: Meshes used in the simulations: (a) coarse mesh, (b) medium mesh, and (c) fine mesh.

The specimen is meshed using quadratic 9-node elements. Different meshes are successively considered:

a coarse mesh of 530 elements (with a element size ≈ 0.3lf at the notches) as illustrated in Fig. 15a, a

medium mesh of 1262 elements (with a element size ≈ 0.2lf at the notches) as illustrated in Fig. 15b, and a

fine mesh of 5048 elements (with a element size ≈ 0.1lf at the notches) as illustrated in Fig. 15c. The same

quadratic polynomial shape functions are used for all unknowns fields including the displacement, softening

non-local variable, and failure non-local variable.
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Figure 16: Comparison of the force-displacement curves obtained with different meshes under displacement rates ∆̇x = ∆̇x =

10−3mm/s. In this figure, F =
√
F 2
x + F 2

y , ∆ =
√

∆2
x + ∆2

y and t is the specimen thickness.
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The evolution of the reaction force F =
√
F 2
x + F 2

y with respect to the boundary displacement magnitude

∆ =
√

∆2
x + ∆2

y is reported in Fig. 16 under a displacement rate ∆̇x = ∆̇y = 10−3 mm/s for the three mesh

sizes. The convergence with respect to the mesh size is clearly observed in both the pre-peak and softening

stages of the overall response.

(a) (b) (c)

Figure 17: Total softening patterns with different meshes when the prescribed displacement ∆ = 1.3 mm: (a) coarse mesh, (b)

medium mesh, and (c) fine mesh.

Figure 17 shows the distribution at the prescribed displacement ∆ = 1.3 mm of the total softening

variable D, following the relation (9), for the three mesh sizes. The obtained results remain insensitive

from the mesh size. The total damage is limited by a value of 0.92 since the softening Ds is saturated by a

value of 0.2 and the failure variable Df is limited to a value of 0.9. A larger value of Df can be used but

the numerical scheme may become unstable since the damage variable increases quickly when the damage

variable is close to 1 as the property of the failure softening evolution described in Eq. (90). In order to

capture these critical states, a damage-crack transition framework should be used as proposed by Wu et al.

(2014).

Figure 18 shows the distributions of the softening and failure variables leading to the total softening

result in Fig. 17c. The saturated value of the softening variable Ds is not reached yet; the failure occurs

before the saturation of Ds, once the failure variable Df obtains its critical value.

The force-displacement curves with different loading rates are reported in Fig. 19. The results are

obtained using the medium mesh, see Fig. 15b. The ability of the proposed constitutive model to model

the rate-dependent behavior is clearly observed.
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(a) (b)

Figure 18: Softening variable (a) and failure variable (b).
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Figure 19: Comparison of the force-displacement curves under different displacement rates using the medium mesh.

6. Model validation

Considering the constitutive parameters reported in Tabs. 2 - 5, the current model is validated in this

section against experimental results obtained at room temperature ( ≈ 20oC).

6.1. Experimental tests

Cylindrical specimens with diameter and height both equal to 12 mm were used as considered in the

uniaxial compressive tests described in Section 4. Different loading conditions were performed:

• Compression creep behavior: The specimen is first compressed under constant engineering strain rate

up to a given load. Then the load is kept constant by switching from displacement control to force

control. The following load levels are considered: 11 kN, 12 kN, 13 kN, and 14 kN, where this last

value is close to the compressive yield peak stress. The tests were performed on the usual screw-driven

universal testing machine used for compression. A solid lubrication with PTFE films was used to

minimize frictional effects.
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• Cyclic loading under compression: the specimen is first loaded in compression to a strain level under

a constant engineering strain rate of 1.4 10−3 s−1, then the specimen is unloaded until reaching zero

stress level at the same constant engineering strain rate of 1.4 10−3 s−1 before continuing to reach the

next strain level. The solid lubrication with PTFE films was not used.

• Compression loading with friction: The compression tests were performed with and without PTFE

films at two values of the engineering strain rates (1.4 10−3 s−1 and 1.4 10−2 s−1) up to failure. In

the case of absence of PTFE films, the friction between the platens and the specimens induces the

barreling of the specimens so that the stress state cannot be considered to be homogeneous (Chevalier

et al., 2016). Each test was repeated 3 times.

6.2. Finite element model

Because of the specimen symmetry, a reduced finite element model, which represents 1/8th of the experi-

mental specimen, consisting of 864 quadratic brick elements with 6440 finite element nodes is considered, see

Fig. 20. Symmetric boundary conditions are applied in the bottom, left and front surfaces. The specimen

is loaded by a moving rigid surface following the downward direction at a constant engineering strain rate.

In the case of absence of PTFE films, the Coulomb friction model is adopted to account for friction at the

contact surface of the top surface and the rigid surface. The friction coefficient, denoted by f , needs to be

correctly determined to capture the contact conditions between the specimens and the machine platens. If

f = 0, the uniaxial compression state is recovered because the horizontal displacement of the top surface is

not constrained. The viscoelastic-viscoplastic-damage constitutive law is used with its parameters identified

from Section 4, see details in Tabs. 2 - 5. The characteristics lengths l2s = l2f = 2 mm2 (Geers, 1997) are

used for both softening and failure non-local implicit formulations.

X
Y

Z

Figure 20: Finite element mesh used in the finite element simulations (1/8th of the experimental samples).
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Figure 21: Model predictions compared to the experimental data: (a) compressive creep tests and (b) compressive cyclic

loading.

6.3. Results

Figure 21a shows the model predictions of the creep tests in comparison with experiments. Because

of the use of PTFE films, a zero-friction contact is assumed. The current model can capture the creep

behavior at low stress levels as a coupled viscoelastic-viscoplastic behavior is considered in the constitutive

relation. However the use of the current model is limited at stress levels close to the peak stress. In general,

most glassy polymers exhibit nonlinear viscoelastic behavior, in which the creep modulus is stress- and

strain-dependent (Frank and Brockman, 2001; Abu Al-Rub et al., 2015). Moreover, when the stress level

increases, the damage becomes important, so that a viscoelastic-viscoplastic constitutive model needs to be

enhanced by a rate-dependent damage model to correctly capture creep behavior (Abu Al-Rub et al., 2015).

With a linear viscoelastic part enhanced by the geometrical nonlinearity and coupled with viscoplastic and

saturation softening parts, the current model cannot fully capture the creep behavior at stress levels close

to the peak stress.

Figure 21b shows the comparisons between the results obtained by the model and by experiments under

cyclic loading. Two computations were successively performed with both sticking (horizontal displacements

of top surface are fully clamped) and sliding (horizontal displacements of top surface are fully free) boundary

conditions. The experimental result exhibits a strong nonlinearity upon unloading (so-called Bauschinger-

like effect) and hysteresis loops. During the loading phase, the experimental results are bounded by the

numerical ones because of the friction effect, which becomes important as the PTFE films were not used.

During unloading phase, the predicted evolution is almost linear. As only a weakly viscoelastic effect is

considered and the underlying kinematic hardening part is not high enough to induce the plastic deformation

during unloading phase, the current model cannot predict correctly this unloading behavior. In the literature,

the nonlinearity upon unloading of glassy polymers can be modeled by considering a nonlinear viscoeslastic

behavior as demonstrated by Xia et al. (2005, 2006); Colak (2005); Anand and Ames (2006). The constitutive
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models considering the kinematic hardening can account for this nonlinear response at large strains (Anand

et al., 2009; Ames et al., 2009), however they do not adequately account for this effect at small strains (Anand

and Ames, 2006). Additionally, the heat generation and thermal conduction due to plastic dissipation become

important at large strains and can affect both loading and unloading responses as demonstrated by Anand

et al. (2009); Ames et al. (2009). A nonlinear viscoelastic model, heat generation, and thermal conduction

will be considered in a future work in a fully thermo-mechanically-coupled simulation.
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Figure 22: Model predictions compared to the experimental data: (a) compressive tests at a strain rate of 1.4 10−3 s−1 and

(b) compressive tests at a strain rate of 1.4 10−2 s−1. Numerical results with the friction coefficient f = 0, 0.07, 0.15, and

experimental results with and without PTFE films up to onset of failure are reported.

Figures 22a and b show the comparisons of true strain-true stress results obtained by the current model

and by experiments in the case of compressive tests involving friction. Numerical simulations are performed

with three friction coefficient values (f = 0, 0.07, and 0.15) for both engineering strain rates 1.4 10−3 s−1 and

1.4 10−2 s−1. The uniaxial compression tests are known to be sensitive to the friction (Fiedler et al., 2001).

In the cases without PTFE films, friction is more pronounced leading to higher stress levels in the apparent

stress-strain curves and earlier onset of failure. The barreling shape leads to the generation of significant

stress heterogeneities, which accelerate the first crack in the specimen, explaining the earlier onset of failure

(Chevalier et al., 2016). With larger values of the friction coefficient, the numerical results exhibit larger

stress level and the onset of failure at a lower failure strain and at a lower failure stress in accordance with

the experimental observation. This can be explained by the more pronounced barreling with the increase

of the friction coefficient. The value of the friction coefficient of 0.07 provides a good agreement between

the numerical and experimental results at both strain rates. A typical barreling profile when the friction

coefficient is set to 0.07 at an engineering strain rate of 1.4 10−3 s−1 is reported in Fig. 23b agreeing with
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the corresponding experimental result illustrated in Fig. 23a.

(a) (b)

Figure 23: Barreling profile of the specimen without using the solid lubrication under compression at an engineering strain

rate of 1.4 10−3 s−1: (a) experimental result from Chevalier et al. (2016) and (b) numerical result with f = 0.07. The pressure

distribution (in Pa) obtained from the numerical model is also reported.

7. Conclusions and perspectives

A large strain hyperelastic viscoelastic-viscoplastic-damage constitutive model has been developed with

the ambition to capture the multi-stage stress-strain responses of amorphous glassy polymers. The softening

and failure phenomena are modeled in the context of the non-local implicit gradient formulation in order

to avoid the problem of the loss of solution uniqueness, leading to a multi-mechanism non-local damage

continuum. The compression-tension asymmetry in both yielding and failure are modeled respectively by a

power-enhanced yield function and by a power-enhanced failure criterion.

The proposed constitutive model is calibrated for the highly cross-linked RTM6 epoxy resin at room

temperature. Through experimental results under uniaxial tensile and compression with different constant

engineering strain rates, the constitutive parameters are identified. As the failure in this material occurs in

a brittle way, the failure stage is idealized by a progressive damage law, which allows modeling mechanical

problems in the context of the multi-mechanism damage continuum.

The mesh objectivity is clearly demonstrated by studying the behavior of the 2-dimensional double-

notched specimen under a tensile/shear combined loading as the result of using non-local implicit gradient

formulations to circumvent the problem of the loss of solution uniqueness.

The current model is validated through experimental results of the highly cross-linked RTM6 epoxy

resin at room temperature under compressive creep loading, compressive cyclic loading, and compressive

loading with friction. The current model can capture the creep behavior at low stress levels thanks to the

viscoelastic constitutive part. A good agreement both in sample deformation and in overall stress-strain

response is obtained in case of compressive loading with friction. However, the current model fails to
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predict the strong hysteresis behavior upon unloading as only a weakly viscoelastic effect is considered. The

viscoelastic non-linearity, the heat generation, and thermal conduction need to be considered in a future

work in a fully thermo-mechanical coupled framework.

The current constitutive model is limited when the failure damage is close to 1, in that case the numerical

scheme becomes unstable because of the quick increase of the damage rate. In future works, a damage-crack

transition will be considered to deal with this problem, allowing to create crack when the damage reaches

its critical value (smaller than 1). This constitutive law will be used to study the mechanical behavior of

the fiber reinforced composites in the context of the computational micro-mechanics under different loading

conditions as considered by Wu et al. (2013). The influence of the damage initialization and propagation in

the matrix phase on the composite structures will be studied.
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Appendix A. Weak form and finite element implementation with incremental iterative for-

mulation

The weak form of the set of Eqs. (1, 16, 19) completed by the boundary conditions (2, 3, 22) is

established using suitable weight functions defined in the 3+Nd dimensional space, where Nd is the number

of non-local variables (here Nd = 2 as Ds and Df are considered). Considering a time step [tn tn+1], the

solution at time tn is known and the problem is solved at time tn+1. The weak form is stated as finding

(u, ϕ̄k, k = 1, ..., Nd) ∈ [C0 (B0)]3+Nd such that∫
B0

(P⊗∇0 + B0) · δu dΩ = 0 , and∫
B0

(
ϕ̄k − l2k∆0ϕ̄k − ϕk

)
· δϕ̄k dΩ = 0 (A.1)

∀ (δu, δϕ̄k, k = 1, ..., Nd) kinematically admissible .

Applying the divergence theorem and boundary conditions, the weak form (A.1) becomes∫
B0

P : (δu⊗∇0) dΩ =

∫
∂NB0

T0 · δu d∂Ω +

∫
B0

B0 · δu dΩ and∫
B0

(
ϕ̄kδϕ̄k + l2k∇0ϕ̄k ·∇0δϕ̄k

)
dΩ =

∫
B0

ϕkδϕ̄k dΩ , (A.2)
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with k = 1, ..., Nd. The displacement field and non-local variables are interpolated in each element Ωe0 with

the shape function matrices Nu and Nϕ̄k , such that

u = NuU , (A.3)

ϕ̄k = Nϕ̄kΦk , (A.4)

δu = NuδU , and (A.5)

δϕ̄k = Nϕ̄kδΦk . (A.6)

The deformation gradient and the gradient of the non-local variables are easily deduced by

F = BuU , and (A.7)

∇0ϕ̄k = Bϕ̄kΦk , (A.8)

where Bu and Bϕ̄k are the matrices of the gradients of shape function Nu and Nϕ̄k , respectively. Using

the finite element approximations (A.3-A.6), the weak form (A.2) is equivalent to the non-linear system of

equations 
Fint

Fϕ̄1

...

Fϕ̄Nd

−


Fext

Fϕ1

...

FϕNd

 = 0 , (A.9)

where the force vectors are given by

Fint =

∫
B0

BT
uP dΩ , (A.10)

Fext =

∫
∂NB0

NT
uT0 d∂Ω +

∫
B0

NT
uB0 dΩ , (A.11)

Fϕ̄k =

∫
B0

[
(Nϕ̄k)

T
Nϕ̄k + l2k (Bϕ̄k)

T
Bϕ̄k

]
Φk dΩ , and (A.12)

Fϕk =

∫
B0

(Nϕ̄k)
T
ϕk dΩ , (A.13)

with k = 1, ..., Nd. The non-linear system (A.9) is iteratively solved at iteration i for the time step [tn tn+1]

in the following matrix form

Kuu Kuϕ̄1
Kuϕ̄2

... Kuϕ̄Nd

Kϕ1u Kϕ̄1 ϕ̄1
0 ... 0

Kϕ2u 0 Kϕ̄2 ϕ̄2 ... 0
...

...
...

. . .
...

KϕNd u
0 0 ... Kϕ̄Nd ϕ̄Nd





δU

δΦ1

δΦ2

...

δΦNd


=



Fext

Fϕ1

Fϕ2

...

FϕNd


−



Fint

Fϕ̄1

Fϕ̄2

...

Fϕ̄Nd


, (A.14)
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with the assumption that there is no cross term between the different non-local variables. In Eq. (A.14),

the components of the global stiffness matrix are given by

Kuu =

∫
B0

BT
uCuuBu dΩ , (A.15)

Kuϕ̄k =

∫
B0

BT
uCuϕ̄kNϕ̄k dΩ , (A.16)

Kϕku = −
∫
B0

(Nϕ̄k)
T

SkBu dΩ , and (A.17)

Kϕ̄k ϕ̄k =

∫
B0

[
(Nϕ̄k)

T
Nϕ̄k + l2k (Bϕ̄k)

T
Bϕ̄k

]
dΩ for k = 1...Nd , (A.18)

where

Cuu =
∂P

∂F
=

Nd∏
k=1

(1−Dk)L̂− P̂⊗
Nd∑
k=1

 Nd∏
j=1,j 6=k

(1−Dj)
∂Dk

∂F

 , (A.19)

Cuϕ̄k =
∂P

∂ϕ̄k
= −P̂

Nd∏
j=1,j 6=k

(1−Dj)
∂Dk

∂ϕ̄k
, and (A.20)

Sk =
∂ϕk
∂F

. (A.21)

In these last equations, L̂ = ∂P̂
∂F is the tangent operator of the undamaged constitutive law defined from Eq.

(7) and given in Appendix C, ∂Dk∂F and ∂Dk
∂ϕ̄k

are estimated from the damage evolution in Eqs. (17, 20), and

the matrix Sk comes from the definition of the local variable ϕk as considered Appendix B. The derivations

of ∂Dk
∂F , of ∂Dk

∂ϕ̄k
, and of Sk are provided in Appendix D.

Appendix B. Integration algorithm of the constitutive model

The numerical integration scheme of the current viscoelastic-viscoplastic-damage constitutive model is

implemented in a typical time interval [tn tn+1], with tn+1 = tn + ∆tn. The variables in the current state

at time tn+1, specified without time index for simplicity, are estimated from their values from the previous

state at time tn, specified by the time index n, the current deformation gradient F, and the current non-local

variables ϕ̄s and ϕ̄f .

Appendix B.1. Viscoelastic-viscoplastic algorithm

Following Eq. (47), the first Piola-Kirchhoff stress tensor is given at time tn+1 by

P̂ = Fve · S · Fvp−T , (B.1)

where

S = τ̂ : L with L =
∂ ln Cve

∂Cve

∣∣∣
Cve(tn+1)

. (B.2)
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In the numerical implementation, the logarithmic operator is approximated by

ln (I + A) = A− A2

2
+

A3

3
− A4

4
+ ... , (B.3)

where A denotes an arbitrary second-order tensor and where I is the identity one. Its derivative L is then

computed from this approximation.

In order to estimate the corotational Kirchhoff stress τ̂ at time tn+1, the viscoelastic stress-strain relation

in Eqs. (43, 44) is integrated up to the current time tn+1. The deviatoric part in Eq. (43) is rewritten

dev τ̂ =

∫ tn+1

−∞
2G(tn+1 − s)

d

ds
dev Eve(s) ds = 2G∞dev Eve +

N∑
i=1

Ain+1 , (B.4)

where Eve is the current elastic strain tensor and where

Ain+1 =

∫ tn+1

−∞
2Gi exp

(
− tn+1 − s

gi

)
d

ds
dev Eve(s) ds

= Ain exp

(
−∆tn

gi

)
+

∫ tn+1

tn

2Gi exp

(
− tn+1 − s

gi

)
d

ds
dev Eve(s) ds . (B.5)

The last integral is approximated using the midpoint rule in the time interval [tn tn+1 = tn + ∆tn], as∫ tn+1

tn

2Gi exp

(
− tn+1 − s

gi

)
d

ds
dev Eve(s) ds

≈ 2Gi exp

(
− tn+1 − s

gi

)
d

ds
dev Eve(s)

∣∣∣∣
s=

tn+1+tn
2

∆tn

≈ 2Gi exp

(
−∆tn

2gi

)
(dev Eve − dev Eve

n ) . (B.6)

Therefore, Eq. (B.5) leads to

Ain+1 = Ain exp

(
−∆tn

gi

)
+ 2Gi exp

(
−∆tn

2gi

)
(dev Eve − dev Eve

n ) , (B.7)

and Eq. (B.4) is rewritten

dev τ̂ = 2Gedev Eve − 2(Ge −G∞)dev Eve
n +

N∑
i=1

[
Ain exp

(
−∆tn

gi

)]
, (B.8)

where

Ge = G∞ +

N∑
i=1

Gi exp

(
−∆tn

2gi

)
. (B.9)

Following an equivalent manipulation, the volumetric part in Eq. (44) is rewritten

p̂ =

∫ tn+1

−∞
K(tn+1 − s)

d

ds
tr Eve(s) ds

= K∞tr Eve +

N∑
i=1

Bin+1 , (B.10)
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where

Bin+1 = Bin exp

(
−∆tn

ki

)
+Ki exp

(
−∆tn

2ki

)
(tr Eve − tr Eve

n ) . (B.11)

Eq. (B.10) can be finally rewritten as

p̂ = Ketr Eve − (Ke −K∞)tr Eve
n +

N∑
i=1

[
Bin exp

(
−∆tn

ki

)]
, (B.12)

with

Ke = K∞ +

N∑
i=1

Ki exp

(
−∆tn

2ki

)
. (B.13)

The computation of the corotational Kirchhoff stress τ̂ , viscoelastic deformation gradient Fve, and

viscoplastic deformation gradient Fvp follows a predictor-corrector scheme during the time interval [tn tn+1].

The predictor-corrector scheme is stated as follows.

Appendix B.1.1. Viscoelastic predictor

The plastic deformation tensor is initialized by its value from the previous step: Fvppr = Fvpn . The

predictor of the viscoelastic deformation gradient tensor is thus given by

Fvepr = F · Fvppr−1 , (B.14)

and the predictor of the viscoelastic right Cauchy strain tensor follows

Cvepr = FveprT · Fvepr = Fvppr−T · FT · F · Fvppr−1 = Fvppr−T ·C · Fvppr−1 . (B.15)

The predictors of the corotational Kirchhoff stress are deduced using Eqs. (B.8, B.12) and using Eve =

Evepr = 1
2 ln Cvepr, leading to

dev τ̂ pr = 2Gedev Evepr − 2(Ge −G∞)dev Eve
n +

N∑
i=1

[
An
i exp

(
−∆t

gi

)]
, (B.16)

and

p̂pr = Ketr Evepr − (Ke −K∞)tr Eve
n +

N∑
i=1

[
Bni exp

(
−∆t

ki

)]
. (B.17)

The yield condition (57) can then be assessed in terms of the trial value of the corotational Kirchhoff stress

τ̂ pr = p̂prI + dev τ̂ pr , (B.18)

where p̂pr and dev τ̂ pr are estimated from Eqs. (B.16, B.17) respectively. If the yield condition F (φpr) ≤ 0,

where φpr = τ̂ pr − bn, is satisfied using this predictor, the final step is reached. Otherwise, the correction

step follows.
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Appendix B.1.2. Viscoplastic corrections

If the yield condition F (φpr) ≤ 0 is not satisfied using the predictor step, the corrector step is applied.

The accumulated plastic deformation γ = γn + ∆γ is iteratively computed to satisfy the extended yield

condition F̄ = 0, where F̄ is given by Eq. (75). Integrating Eq. (29) in the time interval [tn tn+1] using

Eqs. (49, 51) leads to

Fvp = exp

[∫ tn+1

tn

λ(t)Q(t) dt

]
Fvpn . (B.19)

The flow normal Q is assumed to be constant in this time step and is approximated by

Q = (1− ζ)Q(tn) + ζQ(tn+1) , (B.20)

in which ζ is a user parameter. In this work, we use ζ = 1, which is known as the ”radial return algorithm”

(Simo and Hughes, 2006) and the notation Q(tn+1) is then replaced by Q. Equation (B.19) thus simplifies

by using Eq. (B.20) into

Fvp = exp (ΓQ)Fvpn , (B.21)

where

Γ =

∫ tn+1

tn

λ(t) dt . (B.22)

The elastic deformation gradient is then corrected by

Fve = F · Fvp−1 = F · Fvp−1
n [exp (ΓQ)]

−1
, (B.23)

and the viscoelastic right Cauchy tensor follows as

Cve = [exp (ΓQ)]
−T ·Cvepr · [exp (ΓQ)]

−1
. (B.24)

In terms of the viscoelastic logarithmic strain measures, Eq. (B.24) reduces to

Eve = Evepr − ΓQ . (B.25)

Using Eqs. (B.16, B.17), the corotational Kirchhoff stress are given by

τ̂ = p̂I + dev τ̂ , (B.26)

where

p̂ = p̂pr −KeΓtr Q , (B.27)

dev τ̂ = dev τ̂ pr − 2GeΓdev Q . (B.28)
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The backstress is estimated by integrating Eq. (67)

b = bn + kHbΓQ . (B.29)

From the definition of the non-associated flow potential in Eq. (63), the flow normal Q is estimated

using Eq. (50) by

Q = 3devφ +
2β

3
φpI . (B.30)

The equivalent plastic deformation increment ∆γ = γ − γn is estimated by integrating Eq. (65) and using

Eqs. (49, 51, B.30), leading to

∆γ = kΓ
√

Q : Q = kΓ

√
6φe2 +

4

3
β2φp2 . (B.31)

Combining Eqs. (B.27 - B.30) leads to

φp =
φprp
v
, (B.32)

devφ =
devφpr

u
, and (B.33)

φe =
φpre
u
, (B.34)

where

u = 1 + 6G̃Γ , v = 1 + 2βK̃Γ , G̃ = Ge +
k

2
Hb , and K̃ = Ke +

k

3
Hb . (B.35)

Finally, using these results, Eq. (B.31) leads to

∆γ = kΓA , (B.36)

where

A =

√
6

(φpre )2

u2
+

4β2

3

(φprp )2

v2
. (B.37)

The extended yield condition (75) can be rewritten using the trial values and the flow parameter Γ as

F̄ = a2

(
φpre
u

)α
− a1

φprp
v
− a0 −

(
η

Γ

∆t

)p
= 0 , (B.38)

where the viscoplastic flow parameter λ is approximated from Eq. (B.22) by

λ =
Γ

∆t
. (B.39)

Since Γ is the only unknown of Eq. (B.38), this equation can be iteratively solved by the Newton-Raphson

procedure. For that purpose, the derivative of F̄ with respect to Γ is required:

dF̄

dΓ
=

[
H2

(
φpre
u

)α
−H1

φprp
v
−H0

]
∂∆γ

∂Γ
+
∂F̄

∂Γ
, (B.40)
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with

H2 =
∂a2

∂∆γ
= − α

σα+1
c

Hc , (B.41)

H1 =
∂a1

∂∆γ
=

3

σc

[
αmα−1

m+ 1
− mα − 1

(m+ 1)2

]
Htσc −Hcσt

σ2
c

− 3
mα − 1

m+ 1

Hc

σ2
c

, (B.42)

H0 =
∂a0

∂∆γ
=

(αmα−1 + 1)(m+ 1)−mα −m
(m+ 1)2

Htσc −Hcσt
σ2
c

, (B.43)

∂F̄

∂Γ
= −a2

(
φpre
u

)α
α6G̃

u
+ a1

φprp
v

2βK̃

v
−
( η

∆t

)p
pΓp−1 , (B.44)

∂∆γ

∂Γ
= k

(
A+ γ

∂A

∂Γ

)
, and (B.45)

∂A

∂Γ
= − 1

2A

[
72G̃(φpre )2

u3
+

16K̃β3(φprp )2

3v3

]
. (B.46)

Appendix B.1.3. Final step

The effective first Piola-Kirchhoff stress P̂ is eventually estimated using Eq. (B.1). The computation of

the effective tangent operator ∂P̂
∂F is detailed in Appendix C.

Appendix B.2. Softening and failure variables

Because of the non-local formulation, the resolution of the effective stress P̂ is locally uncoupled from

the evolution of the softening variable Ds and of the failure variable Df . The coupling is achieved through

the finite element resolution, see Appendix A.

The historical non-local variable χs is given byχs = χsn if ϕ̄s ≤ χsn

χs = ϕ̄s if ϕ̄s > χsn

, (B.47)

where the non-local value ϕ̄s follows the finite element resolution. The evolution of the softening variable

Ds at time tn+1 is directly estimated using Eq. (81).

From the stress resolution of the viscoelastic-viscoplastic constitutive law, the prediction of the failure

criterion in Eq. (82) is estimated by

F prf = Φf

(
τ̂ , X̂c, X̂t

)
− rn ≤ 0 , (B.48)

leading to the estimation of the internal variable r at time tn+1 using Eq. (83) as

r =

rn if F prf ≤ 0

Φf

(
τ̂ , X̂c, X̂t

)
if F prf > 0

, (B.49)
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in order to satisfy Ff = 0. Using Eq. (89), the value of the local variable ϕf is then given by

ϕf =

ϕfn if r = rn

ϕfn + ∆γ if r > rn

, (B.50)

where ∆γ is given in Eq. (B.31). The historical non-local variable χf is given byχf = χfn if ϕ̄f ≤ χfn

χf = ϕ̄f if ϕ̄f > χfn

, (B.51)

where the non-local value ϕ̄f follows the finite element resolution. The evolution of the failure variable Df

at the time tn+1 is directly estimated using Eq. (91).

The derivatives of local variables, of the softening variable, and of failure variable required for the iterative

procedure of the finite element resolution are detailed in Appendix D.

Appendix C. Effective material tangent operator

From Eq. (B.1), the effective tangent operator is estimated by the relation

L̂ =
∂P̂

∂F
=
∂Fve

∂F
2 · (S · Fvp) + Fve ·1 ∂S

∂F
2 · Fvp + (Fve · S) · ∂Fvp−1

∂F
, (C.1)

where i· (·i) is the ith left (right) dot product operator of two tensors considering ith index of the left (right)

tensor.

The relation Fve = F · Fvp−1 leads to

∂Fve

∂F
= (I⊗ I) 2 · Fvp−1 + F · ∂Fvp−1

∂F
. (C.2)

From Fvp · Fvp−1 = I, one has

∂Fvp−1

∂F
= −Fvp−1 · ∂Fvp

∂F
2 · Fvp−1 . (C.3)

To compute the tangent operator L̂, the values of ∂S
∂F and ∂Fvp

∂F need to be estimated. The definition of

the right Cauchy strain tensor (25) yields

∂•
∂F

=
∂•
∂C

:
∂C

∂F
, (C.4)

where • represents an arbitrary tensor field. Using Eq. (B.15) leads to

∂•
∂C

= Fvppr−1 · ∂•
∂Cvepr

· Fvppr−T . (C.5)

Therefore, ∂S
∂Cvepr and ∂Fvp

∂Cvepr have to be estimated. Eq. (B.21) leads to

∂Fvp

∂Cvepr
=

[
E :

(
Q⊗ ∂Γ

∂Cvepr
+ Γ

∂dev Q

∂Cvepr
+

Γ

3
I⊗ ∂tr Q

∂Cvepr

)]
2 · Fvpn , (C.6)
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where

E =
∂ exp A

∂A

∣∣∣
ΓQ

. (C.7)

Equation (B.2) leads to

∂S

∂Cvepr
=

∂L
∂Cvepr

3,4 : τ̂ + L :
∂τ̂

∂Cvepr
, (C.8)

where

∂τ̂

∂Cvepr
= I⊗ ∂p̂

∂Cvepr
+
∂dev τ̂

∂Cvepr
. (C.9)

Using Eq. (B.27), one has

∂p̂

∂Cvepr
=

∂p̂pr

∂Cvepr
−KeΓ

∂tr Q

∂Cvepr
−Ke

∂Γ

∂Cvepr
tr Q . (C.10)

Equation (B.17) leads to

∂p̂pr

∂Cvepr
=

∂p̂pr

∂Evepr
:
∂Evepr

∂Cvepr
=
Ke

2
I : Lpr , (C.11)

where

Lpr =
∂ ln Cve

∂Cve

∣∣∣
Cvepr

. (C.12)

Using Eq. (B.28), one has

∂dev τ̂

∂Cvepr
=
∂dev τ̂ pr

∂Cvepr
− 2GeΓ

∂dev Q

∂Cvepr
− 2Gedev Q⊗ ∂Γ

∂Cvepr
. (C.13)

Equation (B.16) leads to

∂dev τ̂ pr

∂Cvepr
=
∂dev τ̂ pr

∂Evepr
:
∂Evepr

∂Cvepr
= Ge

(
I − 1

3
I⊗ I

)
: Lpr . (C.14)

Finally, it is necessary to compute ∂Γ
∂Cvepr , ∂devQ

∂Cvepr and ∂trQ
∂Cvepr . Eqs. (B.30, B.32) lead to

∂tr Q

∂Cvepr
=

2β

v

∂p̂pr

∂Cvepr
−

4K̃β2φprp
v2

∂Γ

∂Cvepr
, (C.15)

and Eqs. (B.30, B.33) lead to

∂dev Q

∂Cvepr
=

3

u

∂dev τ̂ pr

∂Cvepr
− 18G̃

u2
devφpr ⊗ ∂Γ

∂Cvepr
. (C.16)

The value of ∂Γ
∂Cvepr is estimated from the consistency condition of the yield condition, i.e.

dF̄ (Cvepr,∆γ,Γ) = 0 , (C.17)

which is detailed by

∂F̄

∂Cvepr
+

[
H2

(
φpre
u

)α
−H1

φprp
v
−H0

]
∂∆γ

∂Cvepr
+

(
∂F

∂Γ
+

∂F̄

∂∆γ

∂∆γ

∂Γ

)
∂Γ

∂Cvepr
= 0 , (C.18)
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where

∂F̄

∂Cvepr
=

a2

uα
α

2
(φpre )α−23devφpr :

∂dev τ̂ pr

∂Cvepr
− a1

v

∂p̂pr

∂Cvepr
, (C.19)

∂∆γ

∂Cvepr
= kΓ

∂A

∂Cvepr
, (C.20)

∂A

∂Cvepr
=

1

2A

(
18

u2
devφpr :

∂dev τ̂ pr

∂Cvepr
+

8β2

3v2
φprp

∂p̂pr

∂Cvepr

)
. (C.21)

Finally, one has

∂Γ

∂Cvepr
= −

∂F̄
∂Cvepr + ∂F̄

∂∆γ
∂∆γ

∂Cvepr

∂F̄
∂Γ + ∂F̄

∂∆γ
∂∆γ
∂Γ

. (C.22)

The value of ∂γ
∂F is estimated from ∂γ

∂Cvepr , which is given by

∂γ

∂Cvepr
= kΓ

∂A

∂Cvepr
+ k

(
A+ Γ

∂A

∂Γ

)
∂Γ

∂Cvepr
. (C.23)

Appendix D. Derivatives of local variables and of the softening variables

From the definition of the local variables ϕs, ϕf , their derivatives with respect to F are required to

evaluate Eq. (A.21). Following Eq. (78), one has

Ss =
∂γ

∂F
. (D.1)

Equation (89) leads to

Sf =

0 if r = rn

∂γ
∂F if r > rn

. (D.2)

Using Eq. (79), the derivatives resulting from the softening law required to estimate the relations (A.19,

A.20) are given by

∂Ds

∂F
= 0 and (D.3)

∂Ds

∂ϕ̄s
=

0 if χs ≤ χsn

(Ds∞ −Ds)Hs (χs)
ζs if χs > χsn

. (D.4)

Using Eq. (90), the required derivatives from the failure softening law for Eqs. (A.19, A.20) are given

by

∂Df

∂F
= 0 , and (D.5)

∂Df

∂ϕ̄f
=


0 if χf ≤ χfn

Hf (χf )
ζf (1−Df )

−ζd if χfn < χf ≤ χf c

0 if χf > χf c

. (D.6)
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