[en] In this paper, we present an optimized retrieval strategy for carbonyl sulfide (OCS), using Fourier transform infrared (FTIR) solar observations made at the high-altitude Jungfraujoch station in the Swiss Alps. More than 200 lines of the nu3 fundamental band of OCS have been systematically evaluated and we selected 4 microwindows on the basis of objective criteria minimizing the effect of interferences, mainly by solar features, carbon dioxide and water vapor absorption lines, while maximizing the information content. Implementation of this new retrieval strategy provided an extended time series of the OCS abundance spanning the 1995-2015 time period, for the study of the long-term trend and seasonal variation of OCS in the free troposphere and stratosphere.
Three distinct periods characterize the evolution of the tropospheric partial columns: a first decreasing period (1995-2002), an intermediate increasing period (2002-2008), and the more recent period (2008-2015) which shows no significant trend. Our FTIR tropospheric and stratospheric time series are compared with new in situ gas chromatography mass spectrometry (GCMS) measurements performed by Empa (Laboratory for Air Pollution/Environmental Technology) at the Jungfraujoch since 2008, and with space-borne solar occultation observations by the ACE-FTS instrument on-board the SCISAT satellite, respectively, and they show good agreement. The OCS signal recorded above Jungfraujoch appears to be closely related to anthropogenic sulfur emissions.
Disciplines :
Earth sciences & physical geography
Author, co-author :
Lejeune, Bernard ; Université de Liège > Département d'astrophys., géophysique et océanographie (AGO) > Groupe infra-rouge de phys. atmosph. et solaire (GIRPAS)
Mahieu, Emmanuel ; Université de Liège > Département d'astrophys., géophysique et océanographie (AGO) > Groupe infra-rouge de phys. atmosph. et solaire (GIRPAS)
Vollmer, M. K.
Reimann, S.
Bernath, P. F.
Boone, C. D.
Walker, K. A.
Servais, Christian ; Université de Liège > Département d'astrophys., géophysique et océanographie (AGO) > Groupe infra-rouge de phys. atmosph. et solaire (GIRPAS)
Language :
English
Title :
Optimized approach to retrieve information on atmospheric carbonyl sulfide (OCS) above the Jungfraujoch station and change in its abundance since 1995
Publication date :
2017
Journal title :
Journal of Quantitative Spectroscopy and Radiative Transfer
ISSN :
0022-4073
Publisher :
Pergamon Press - An Imprint of Elsevier Science, Oxford, United Kingdom
Special issue title :
Special Issue - Satellite Remote Sensing and Spectroscopy: Joint ACE-Odin Meeting, October 2015
BELSPO - Service Public Fédéral de Programmation Politique scientifique Federal Office for Meteorology and Climatology MeteoSwitzerland F.R.S.-FNRS - Fonds de la Recherche Scientifique CSA - Canadian Space Agency Federal Office for the Environment
Funding text :
The University of Liège involvement was primarily supported by BELSPO (Belgian Federal Science Policy Office, Brussels) through the ACROSAT project and by the GAW-CH program of MeteoSwiss. We are also grateful to the Fédération Wallonie-Bruxelles and the F.R.S. – FNRS for supporting mission expenses and laboratory developments, respectively. Emmanuel Mahieu is a Research Associate with theF.R.S. – FNRS. We are grateful to the many Belgian colleagues who have performed the FTIR observations used here. The Atmospheric Chemistry Experiment (ACE), also known as SCISAT, is a Canadian-led mission supported primarily by the Canadian Space Agency. The ground-based GCMS measurements are conducted unde the auspices of the HALCLIM project funded by theSwiss Federal Office for the Environment (FOEN). We thank the International Foundation High Altitude Research Stations Jungfraujoch and Gornergrat (HFSJG, Bern) for supporting the facilities needed to perform the FTIR and GCMS measurements.
[1] Carpenter, L.J., Reimann, S., Lead Authors, Burkholder, J.B., Clerbaux, C., Hall, B.D., Hossaini, R., Laube, J.C., Yvon-Lewis, S.A., Ozone-Depleting Substances (ODSs) and other gases of interest to the Montreal protocol. Chapter 1 in Scientific assessment of ozone depletion: 2014, Global ozone research and monitoring project – Report No. 55, 2014, World Meteorological Organization, Geneva, Switzerland.
[2] Montzka, S.A., Calvert, P., Hall, B.D., Elkins, J.W., Conway, T.J., Tans, P.P., Sweeney, C., On the global distribution, seasonality, and budget of atmospheric carbonyl sulfide (COS) and some similarities to CO2. J Geophys Res, 112(D9), 2007, 10.1029/2006JD007665.
[3] Kettle, A.J., Kuhn, U., von Hobe, M., Kesselmeier, J., Andreae, M.O., Global budget of atmospheric carbonyl sulfide: Temporal and spatial variations of the dominant sources and sinks. ACH 25–1 J Geophys Res: Atmos, 107(D22), 2002, 10.1029/2002JD002187.
[4] Crutzen, P.J., The possible importance of CSO for the sulfate layer of the stratosphere. Geophys Res Lett 3:2 (1976), 73–76, 10.1029/GL003i002p00073.
[5] Suntharalingam, P.., Kettle, A.J., Montzka, S.M., Jacob, D.J., Global 3-D model analysis of the seasonal cycle of atmospheric carbonyl sulfide: implications for terrestrial vegetation uptake. Geophys Res Lett, 35(19), 2008, 10.1029/2008GL034332.
[6] Campbell, J.E., Carmichael, G.R., Chai, T., Mena-Carrasco, M., Tang, Y., Blake, D.R., Blake, N.J., Vay, S.A., Collatz, G.J., Baker, I., Berry, J.A., Montzka, S.A., Sweeney, C., Schnoor, J.L., Stanier, C.O., Photosynthetic control of atmospheric carbonyl sulfide during the growing season. Science 322:5904 (2008), 1085–1088, 10.1126/science.1164015.
[7] Blonquist, J.M., Montzka, S.A., Munger, J.W., Yakir, D., Desai, A.R., Dragoni, D., Griffis, T.J., Monson, R.K., Scott, R.L., Bowling, D.R., The potential of carbonyl sulfide as a proxy for gross primary production at flux tower sites. J Geophys Res, 116(G4), 2011, 10.1029/2011JG001723.
[8] Berry, J., Wolf, A., Campbell, J.E., Baker, I., Blake, N., Blake, D., Denning, A.S., Kawa, S.R., Montzka, S.A., Seibt, U., Stimler, K., Yakir, D., Zhu, Z., A coupled model of the global cycles of carbonyl sulfide and CO2: a possible new window on the carbon cycle. J Geophys Res: Biogeosci 118:2 (2013), 842–852, 10.1002/jgrg.20068.
[9] Commane, R., Herndon, S.C., Zahniser, M.S., Lerner, B.M., McManus, J.B., Munger, J.W., Nelson, D.D., Wofsy, S.C., Carbonyl sulfide in the planetary boundary layer: coastal and continental influences. J Geophys Res: Atmos 118:14 (2013), 8001–8009, 10.1002/jgrd.50581.
[10] Launois, T., Peylin, P., Belviso, S., Poulter, B., A new model of the global biogeochemical cycle of carbonyl sulfide – Part 2: use of carbonyl sulfide to constrain gross primary productivity in current vegetation models. Atmos Chem Phys 15:16 (2015), 9285–9312, 10.5194/acp-15-9285-2015.
[11] Commane, R., Meredith, L.K., Baker, I.T., Berry, J.A., Munger, J.W., Montzka, S.A., Templer, P.H., Juice, S.M., Zahniser, M.S., Wofsy, S.C., Seasonal fluxes of carbonyl sulfide in a midlatitude forest. Proc Natl Acad Sci 112:46 (2015), 14162–14167, 10.1073/pnas.1504131112.
[12] Wang, Y., Deutscher, N.M., Palm, M., Warneke, T., Notholt, J., Baker, I., Berry, J., Suntharalingam, P., Jones, N., Mahieu, E., Lejeune, B., Hannigan, J., Conway, S., Mendonca, J., Strong, K., Campbell, J.E., Wolf, A., Kremser, S., Towards understanding the variability in biospheric CO2 fluxes: using FTIR spectrometry and a chemical transport model to investigate the sources and sinks of carbonyl sulfide and its link to CO2. Atmos Chem Phys 16:4 (2016), 2123–2138, 10.5194/acp-16-2123-2016.
[13] Watts, S.F., The mass budgets of carbonyl sulfide, dimethyl sulfide, carbon disulfide and hydrogen sulfide. Atmos Environ 34:5 (2000), 761–779, 10.1016/S1352-2310(99)00342-8.
[14] Glatthor, N., Höpfner, M., Baker, I.T., Berry, J., Campbell, J.E., Kawa, S.R., Krysztofiak, G., Leyser, A., Sinnhuber, B.-M., Stiller, G.P., Stinecipher, J., von Clarmann, T., Tropical sources and sinks of carbonyl sulfide observed from space. Geophys Res Lett 42:22 (2015), 10,082–10,090, 10.1002/2015GL066293.
[15] SPARC (Stratosphere-troposphere Processes And their Role in Climate). SPARC assessment of stratospheric aerosol properties. In: Thomason L and Peter Th (editors). World Climate Research Program Report 124, SPARC Report 4, WMO/TD- No. 1295. Verrières le Buisson: France; 2006. 346 p.
[17] Chin, M., Davis, D.D., A reanalysis of carbonyl sulfide as a source of stratospheric background sulfur aerosol. J Geophys Res, 100(D5), 1995, 8993, 10.1029/95JD00275.
[18] Kjellström, E., A three-dimensional global model study of carbonyl sulfide in the troposphere and the lower stratosphere. J Atmos Chem 29:2 (1998), 151–177, 10.1023/A:1005976511096.
[19] Leung, F.-Y.T., Colussi, A.J., Hoffmann, M.R., Toon, G.C., Isotopic fractionation of carbonyl sulfide in the atmosphere: implications for the source of background stratospheric sulfate aerosol. 112–1–112–114 Geophys Res Lett, 29(10), 2002, 10.1029/2001GL013955.
[20] Myhre, G., Berglen, T.F., Myhre, C.E.L., Isaksen, I.S.A., The radiative effect of the anthropogenic influence on the stratospheric sulfate aerosol layer. Tellus B 56:3 (2004), 294–299, 10.1111/j.1600-0889.2004.00106.x.
[22] Brühl, C., Lelieveld, J., Crutzen, P.J., Tost, H., The role of carbonyl sulphide as a source of stratospheric sulphate aerosol and its impact on climate. Atmos Chem Phys 12:3 (2012), 1239–1253, 10.5194/acp-12-1239-2012.
[23] Schmidt, J.A., Johnson, M.S., Hattori, S., Yoshida, N., Nanbu, S., Schinke, R., OCS photolytic isotope effects from first principles: sulfur and carbon isotopes, temperature dependence and implications for the stratosphere. Atmos Chem Phys 13:3 (2013), 1511–1520, 10.5194/acp-13-1511-2013.
[24] Sheng, J.-X., Weisenstein, D.K., Luo, B.-P., Rozanov, E., Stenke, A., Anet, J., Bingemer, H., Peter, T., Global atmospheric sulfur budget under volcanically quiescent conditions: aerosol-chemistry-climate model predictions and validation. J Geophys Res: Atmos 120:1 (2015), 256–276, 10.1002/2014JD021985.
[25] Rinsland, C.P., Goldman, A., Mahieu, E., Zander, R., Notholt, J., Jones, N.B., Griffith, D.W.T., Stephen, T.M., Chiou, L.S., Ground-based infrared spectroscopic measurements of carbonyl sulfide: free tropospheric trends from a 24-year time series of solar absorption measurements. ACH 24–1 J Geophys Res: Atmos, 107(D22), 2002, 10.1029/2002JD002522.
[26] Hofmann, D., Barnes, J., O'Neill, M., Trudeau, M., Neely, R., Increase in background stratospheric aerosol observed with lidar at Mauna Loa Observatory and Boulder, Colorado. Geophys Res Lett, 36(15), 2009, 10.1029/2009GL039008.
[27] Zander, R., Mahieu, E., Demoulin, P., Duchatelet, P., Servais, C., Roland, G., DelBouille, L., De Mazière, M., Rinsland, C.P., Evolution of a dozen non-CO2 greenhouse gases above central Europe since the mid-1980s. Environ Sci 2:2–3 (2005), 295–303, 10.1080/15693430500397152.
[28] Kremser, S., Jones, N.B., Palm, M., Lejeune, B., Wang, Y., Smale, D., Deutscher, N.M., Positive trends in Southern Hemisphere carbonyl sulfide. Geophys Res Lett 42:21 (2015), 9473–9480, 10.1002/2015GL065879.
[29] Montzka, S.A., Reimann, S., Coordinating Lead Authors, Engel, A., Krüger, K., O'Doherty, S., Sturges, W.T., Lead Authors, Blake, D., Dorf, M., Fraser, P., Froidevaux, L., Jucks, K., Kreher, K., Kurylo, M.J., Mellouki, A., Miller, J., Nielsen, O.-J., Orkin, V.L., Prinn, R.G., Rhew, R., Santee, M.L., Stohl, A., Verdonik, D., Ozone-Depleting Substances (ODSs) and related chemicals, Chapter 1 in Scientific assessment of ozone depletion: 2010. Global ozone research and monitoring project – Report No. 52, 2011, World Meteorological Organization, Geneva, Switzerland.
[31] Khalil, M.A.K., Rasmussen, R.A., Global sources, lifetimes and mass balances of carbonyl sulfide (OCS) and carbon disulfide (CS2) in the earth׳s atmosphere. Atmos Environ (1967) 18:9 (1984), 1805–1813, 10.1016/0004-6981(84)90356-1.
[32] Blake, N.J., Streets, D.G., Woo, J.-H., Simpson, I.J., Green, J., Meinardi, S., Kita, K., Atlas, E., Fuelberg, H.E., Sachse, G., Avery, M.A., Vay, S.A., Talbot, R.W., Dibb, J.E., Bandy, A.R., Thornton, D.C., Rowland, F.S., Blake, D.R., Carbonyl sulfide and carbon disulfide: large-scale distributions over the western Pacific and emissions from Asia during TRACE-P. J Geophys Res: Atmos, 109(D15), 2004, 10.1029/2003JD004259.
[33] Campbell, J.E., Whelan, M.E., Seibt, U., Smith, S.J., Berry, J.A., Hilton, T.W., Atmospheric carbonyl sulfide sources from anthropogenic activity: implications for carbon cycle constraints. Geophys Res Lett 42:8 (2015), 3004–3010, 10.1002/2015GL063445.
[34] Montzka, S.A., Aydin, M., Battle, M., Butler, J.H., Saltzman, E.S., Hall, B.D., Clarke, A.D., Mondeel, D., Elkins, J.W., A 350-year atmospheric history for carbonyl sulfide inferred from Antarctic firn air and air trapped in ice. J Geophys Res: Atmos, 109(D22), 2004, 10.1029/2004JD004686.
[35] Aydin, M., Fudge, T.J., Verhulst, K.R., Nicewonger, M.R., Waddington, E.D., Saltzman, E.S., Carbonyl sulfide hydrolysis in Antarctic ice cores and an atmospheric history for the last 8000 years. J Geophys Res: Atmos 119:13 (2014), 8500–8514, 10.1002/2014JD021618.
[36] Zander, R., Mahieu, E., Demoulin, P., Duchatelet, P., Roland, G., Servais, C., Mazière, M.D., Reimann, S., Rinsland, C.P., Our changing atmosphere: evidence based on long-term infrared solar observations at the Jungfraujoch since 1950. Sci Total Environ 391:2–3 (2008), 184–195, 10.1016/j.scitotenv.2007.10.018.
[37] Rodgers, C.D., Retrieval of atmospheric temperature and composition from remote measurements of thermal radiation. Rev Geophys, 14(4), 1976, 609, 10.1029/RG014i004p00609.
[38] Rinsland, C.P., Jones, N.B., Connor, B.J., Logan, J.A., Pougatchev, N.S., Goldman, A., Murcray, F.J., Stephen, T.M., Pine, A.S., Zander, R., Mahieu, E., Demoulin, P., Northern and southern hemisphere ground-based infrared spectroscopic measurements of tropospheric carbon monoxide and ethane. J Geophys Res, 103(D21), 1998, 28197, 10.1029/98JD02515.
[39] Hase, F., Hannigan, J.W., Coffey, M.T., Goldman, A., Höpfner, M., Jones, N.B., Rinsland, C.P., Wood, S.W., Intercomparison of retrieval codes used for the analysis of high-resolution, ground-based FTIR measurements. J Quant Spectrosc Radiat Transf 87:1 (2004), 25–52, 10.1016/j.jqsrt.2003.12.008.
[40] Duchatelet, P., Demoulin, P., Hase, F., Ruhnke, R., Feng, W., Chipperfield, M.P., Bernath, P.F., Boone, C.D., Walker, K.A., Mahieu, E., Hydrogen fluoride total and partial column time series above the Jungfraujoch from long-term FTIR measurements: impact of the line-shape model, characterization of the error budget and seasonal cycle, and comparison with satellite and model data. J Geophys Res, 115(D22), 2010, 10.1029/2010JD014677.
[41] Rothman, L.S., Gordon, I.E., Babikov, Y., Barbe, A., Chris Benner, D., Bernath, P.F., Birk, M., Bizzocchi, L., Boudon, V., Brown, L.R., Campargue, A., Chance, K., Cohen, E.A., Coudert, L.H., Devi, V.M., Drouin, B.J., Fayt, A., Flaud, J.-M., Gamache, R.R., Harrison, J.J., Hartmann, J.-M., Hill, C., Hodges, J.T., Jacquemart, D., Jolly, A., Lamouroux, J., Le Roy, R.J., Li, G., Long, D.A., Lyulin, O.M., Mackie, C.J., Massie, S.T., Mikhailenko, S., Müller, H.S.P., Naumenko, O.V., Nikitin, A.V., Orphal, J., Perevalov, V., Perrin, A., Polovtseva, E.R., Richard, C., Smith, M.A.H., Starikova, E., Sung, K., Tashkun, S., Tennyson, J., Toon, G.C., Tyuterev, V.G., Wagner, G., The HITRAN2012 molecular spectroscopic database. J Quant Spectrosc Radiat Transf 130 (2013), 4–50, 10.1016/j.jqsrt.2013.07.002.
[42] Rothman, L.S., Gordon, I.E., Barbe, A., Benner, D.C., Bernath, P.F., Birk, M., Boudon, V., Brown, L.R., Campargue, A., Champion, J.-P., Chance, K., Coudert, L.H., Dana, V., Devi, V.M., Fally, S., Flaud, J.-M., Gamache, R.R., Goldman, A., Jacquemart, D., Kleiner, I., Lacome, N., Lafferty, W.J., Mandin, J.-Y., Massie, S.T., Mikhailenko, S.N., Miller, C.E., Moazzen-Ahmadi, N., Naumenko, O.V., Nikitin, A.V., Orphal, J., Perevalov, V.I., Perrin, A., Predoi-Cross, A., Rinsland, C.P., Rotger, M., Šimečková, M., Smith, M.A.H., Sung, K., Tashkun, S.A., Tennyson, J., Toth, R.A., Vandaele, A.C., Vander Auwera, J., The HITRAN 2008 molecular spectroscopic database. J Quant Spectrosc Radiat Transf 110:9–10 (2009), 533–572, 10.1016/j.jqsrt.2009.02.013.
[43] Rothman, L.S., Jacquemart, D., Barbe, A., Chris Benner, D., Birk, M., Brown, L.R., Carleer, M.R., Chackerian, C., Chance, K., Coudert, L.H., Dana, V., Devi, V.M., Flaud, J.-M., Gamache, R.R., Goldman, A., Hartmann, J.-M., Jucks, K.W., Maki, A.G., Mandin, J.-Y., Massie, S.T., Orphal, J., Perrin, A., Rinsland, C.P., Smith, M.A.H., Tennyson, J., Tolchenov, R.N., Toth, R.A., Vander Auwera, J., Varanasi, P., Wagner, G., The HITRAN 2004 molecular spectroscopic database. J Quant Spectrosc Radiat Transf 96:2 (2005), 139–204, 10.1016/j.jqsrt.2004.10.008.
[44] Bernath, P.F., McElroy, C.T., Abrams, M.C., Boone, C.D., Butler, M., Camy-Peyret, C., Carleer, M., Clerbaux, C., Coheur, P.-F., Colin, R., DeCola, P., De Mazière, M., Drummond, J.R., Dufour, D., Evans, W.F.J., Fast, H., Fussen, D., Gilbert, K., Jennings, D.E., Llewellyn, E.J., Lowe, R.P., Mahieu, E., McConnell, J.C., McHugh, M., McLeod, S.D., Michaud, R., Midwinter, C., Nassar, R., Nichitiu, F., Nowlan, C., Rinsland, C.P., Rochon, Y.J., Rowlands, N., Semeniuk, K., Simon, P., Skelton, R., Sloan, J.J., Soucy, M.-A., Strong, K., Tremblay, P., Turnbull, D., Walker, K.A., Walkty, I., Wardle, D.A., Wehrle, V., Zander, R., Zou, J., Atmospheric Chemistry Experiment (ACE): mission overview. Geophys Res Lett, 32(15), 2005, 10.1029/2005GL022386.
[46] Chang, L., Palo, S., Hagan, M., Richter, J., Garcia, R., Riggin, D., Fritts, D., Structure of the migrating diurnal tide in the Whole Atmosphere Community Climate Model (WACCM). Adv Space Res 41:9 (2008), 1398–1407, 10.1016/j.asr.2007.03.035.
[47] Sussmann, R., Borsdorff, T., Rettinger, M., Camy-Peyret, C., Demoulin, P., Duchatelet, P., Mahieu, E., Servais, C., Technical Note: harmonized retrieval of column-integrated atmospheric water vapor from the FTIR network – first examples for long-term records and station trends. Atmos Chem Phys 9:22 (2009), 8987–8999, 10.5194/acp-9-8987-2009.
[48] Dils, B., Cui, J., Henne, S., Mahieu, E., Steinbacher, M., De Mazière, M., 1997–2007 CO trend at the high alpine site Jungfraujoch: a comparison between NDIR surface in situ and FTIR remote sensing observations. Atmos Chem Phys 11:13 (2011), 6735–6748, 10.5194/acp-11-6735-2011.
[49] Barret, B., De Mazière, M., Demoulin, P., Retrieval and characterization of ozone profiles from solar infrared spectra at the Jungfraujoch. ACH 19–1–ACH 19–15 J Geophys Res: Atmos, 107(D24), 2002, 10.1029/2001JD001298.
[50] Hase, F., Demoulin, P., Sauval, A.J., Toon, G.C., Bernath, P.F., Goldman, A., Hannigan, J.W., Rinsland, C.P., An empirical line-by-line model for the infrared solar transmittance spectrum from 700 to 5000 cm−1. J Quant Spectrosc Radiat Transf 102:3 (2006), 450–463, 10.1016/j.jqsrt.2006.02.026.
[51] Vigouroux, C., Blumenstock, T., Coffey, M., Errera, Q., García, O., Jones, N.B., Hannigan, J.W., Hase, F., Liley, B., Mahieu, E., Mellqvist, J., Notholt, J., Palm, M., Persson, G., Schneider, M., Servais, C., Smale, D., Thölix, L., De Mazière, M., Trends of ozone total columns and vertical distribution from FTIR observations at eight NDACC stations around the globe. Atmos Chem Phys 15:6 (2015), 2915–2933, 10.5194/acp-15-2915-2015.
[52] Rinsland, C.P., Zander, R., Mahieu, E., Demoulin, P., Goldman, A., Ehhalt, D.H., Rudolph, J., Ground-based infrared measurements of carbonyl sulfide total column abundances: long-term trends and variability. J Geophys Res, 97(D5), 1992, 5995, 10.1029/92JD00040.
[53] Krysztofiak, G., Té, Y.V., Catoire, V., Berthet, G., Toon, G.C., Jégou, F., Jeseck, P., Robert, C., Carbonyl sulphide (OCS) variability with latitude in the atmosphere. Atmos-Ocean 53:1 (2015), 89–101, 10.1080/07055900.2013.876609.
[54] Rodgers, C.D., Characterization and error analysis of profiles retrieved from remote sounding measurements. J Geophys Res, 95(D5), 1990, 5587, 10.1029/JD095iD05p05587.
[55] Griffith, D.W.T., Jones, N.B., Matthews, W.A., Interhemispheric ratio and annual cycle of carbonyl sulfide (OCS) total column from ground-based solar FTIR spectra. J Geophys Res: Atmos 103:D7 (1998), 8447–8454, 10.1029/97JD03462.
[56] Barthlott, S., Schneider, M., Hase, F., Wiegele, A., Christner, E., González, Y., Blumenstock, T., Dohe, S., García, O.E., Sepúlveda, E., Strong, K., Mendonca, J., Weaver, D., Palm, M., Deutscher, N.M., Warneke, T., Notholt, J., Lejeune, B., Mahieu, E., Jones, N., Griffith, D.W.T., Velazco, V.A., Smale, D., Robinson, J., Kivi, R., Heikkinen, P., Raffalski, U., Using XCO2 retrievals for assessing the long-term consistency of NDACC/FTIR data sets. Atmos Meas Tech 8:3 (2015), 1555–1573, 10.5194/amt-8-1555-2015.
[57] Franco, B., Hendrick, F., Van Roozendael, M., Müller, J.-F., Stavrakou, T., Marais, E.A., Bovy, B., Bader, W., Fayt, C., Hermans, C., Lejeune, B., Pinardi, G., Servais, C., Mahieu, E., Retrievals of formaldehyde from ground-based FTIR and MAX-DOAS observations at the Jungfraujoch station and comparisons with GEOS-Chem and IMAGES model simulations. Atmos Meas Tech 8:4 (2015), 1733–1756, 10.5194/amt-8-1733-2015.
[58] Rodgers, C.D., Inverse methods for atmospheric sounding: theory and practice. Series on atmospheric oceanic and planetary physics, vol. 2, 2000, World Scientific Publishing Co., Singapore.
[59] Irion, F.W., Gunson, M.R., Toon, G.C., Chang, A.Y., Eldering, A., Mahieu, E., Manney, G.L., Michelsen, H.A., Moyer, E.J., Newchurch, M.J., Osterman, G.B., Rinsland, C.P., Salawitch, R.J., Sen, B., Yung, Y.L., Zander, R., Atmospheric Trace Molecule Spectroscopy (ATMOS) experiment version 3 data retrievals. Appl Opt, 41(33), 2002, 6968, 10.1364/AO.41.006968.
[60] Régalia-Jarlot, L., Hamdouni, A., Thomas, X., Von der Heyden, P., Barbe, A., Line intensities of the: ν3, 4ν2, ν1+ν3, 3ν1 and 2ν1+2ν2 bands of 16O12C32S molecule. J Quant Spectrosc Radiat Transf 74:4 (2002), 455–470, 10.1016/S0022-4073(01)00267-9.
[61] Vander Auwera, J., Fayt, A., Absolute line intensities for carbonyl sulfide from 827 to 2939 cm−1. J Mol Struct 780–781 (2006), 134–141, 10.1016/j.molstruc.2005.04.052.
[62] Miller, B.R., Weiss, R.F., Salameh, P.K., Tanhua, T., Greally, B.R., Mühle, J., Simmonds, P.G., Medusa: a sample preconcentration and GC/MS detector system for in situ measurements of atmospheric trace halocarbons, hydrocarbons, and sulfur compounds. Anal Chem 80:5 (2008), 1536–1545, 10.1021/ac702084k.
[63] Vollmer, M.K., Miller, B.R., Rigby, M., Reimann, S., Mühle, J., Krummel, P.B., O'Doherty, S., Kim, J., Rhee, T.S., Weiss, R.F., Fraser, P.J., Simmonds, P.G., Salameh, P.K., Harth, C.M., Wang, R.H.J., Steele, L.P., Young, D., Lunder, C.R., Hermansen, O., Ivy, D., Arnold, T., Schmidbauer, N., Kim, K.-R., Greally, B.R., Hill, M., Leist, M., Wenger, A., Prinn, R.G., Atmospheric histories and global emissions of the anthropogenic hydrofluorocarbons HFC-365mfc, HFC-245fa, HFC-227ea, and HFC-236fa. J Geophys Res, 116(D8), 2011, 10.1029/2010JD015309.
[64] Gardiner, T., Forbes, A., de Mazière, M., Vigouroux, C., Mahieu, E., Demoulin, P., Velazco, V., Notholt, J., Blumenstock, T., Hase, F., Kramer, I., Sussmann, R., Stremme, W., Mellqvist, J., Strandberg, A., Ellingsen, K., Gauss, M., Trend analysis of greenhouse gases over Europe measured by a network of ground-based remote FTIR instruments. Atmos Chem Phys 8:22 (2008), 6719–6727, 10.5194/acp-8-6719-2008.
[65] Mahieu, E., Zander, R., Toon, G.C., Vollmer, M.K., Reimann, S., Mühle, J., Bader, W., Bovy, B., Lejeune, B., Servais, C., Demoulin, P., Roland, G., Bernath, P.F., Boone, C.D., Walker, K.A., Duchatelet, P., Spectrometric monitoring of atmospheric carbon tetrafluoride (CF4) above the Jungfraujoch station since 1989: evidence of continued increase but at a slowing rate. Atmos Meas Tech 7:1 (2014), 333–344, 10.5194/amt-7-333-2014.
[66] Barkley, M.P., Palmer, P.I., Boone, C.D., Bernath, P.F., Suntharalingam, P., Global distributions of carbonyl sulfide in the upper troposphere and stratosphere. Geophys Res Lett, 35, 2008, L14810, 10.1029/2008GL034270.
[67] Boone, C.D., Walker, K.A., Bernath, P.F., Version 3 retrievals for the atmospheric chemistry experiment fourier transform spectrometer (ACE-FTS). Bernath, P.F., Deepak, A., (eds.) The atmospheric chemistry experiment ACE at 10: a solar occultation anthology, 2013, Publishing, Hampton, Virginia, USA, 103–127.
[68] Sturges, W.T., Penkett, S.A., Barnola, J.-M., Chappellaz, J., Atlas, E., Stroud, V., A long-term record of carbonyl sulfide (COS) in two hemispheres from firn air measurements. Geophys Res Lett 28:21 (2001), 4095–4098, 10.1029/2001GL013958.
[69] Klimont, Z., Smith, S.J., Cofala, J., The last decade of global anthropogenic sulfur dioxide: 2000–2011 emissions. Environ Res Lett, 8(1), 2013, 014003, 10.1088/1748-9326/8/1/014003.
[70] Coffey, M.T., Hannigan, J.W., The temporal trend of stratospheric carbonyl sulfide. J Atmos Chem 67:1 (2010), 61–70, 10.1007/s10874-011-9203-4.
[71] Rinsland, C.P., Chiou, L., Mahieu, E., Zander, R., Boone, C.D., Bernath, P.F., Measurements of long-term changes in atmospheric OCS (carbonyl sulfide) from infrared solar observations. J Quant Spectrosc Radiat Transf 109:16 (2008), 2679–2686, 10.1016/j.jqsrt.2008.07.008.
[72] Mahieu, E., Chipperfield, M.P., Notholt, J., Reddmann, T., Anderson, J., Bernath, P.F., Blumenstock, T., Coffey, M.T., Dhomse, S.S., Feng, W., Franco, B., Froidevaux, L., Griffith, D.W.T., Hannigan, J.W., Hase, F., Hossaini, R., Jones, N.B., Morino, I., Murata, I., Nakajima, H., Palm, M., Paton-Walsh, C., Russell, J.M., Schneider, M., Servais, C., Smale, D., Walker, K.A., Recent northern hemisphere stratospheric HCl increase due to atmospheric circulation changes. Nature 515:7525 (2014), 104–107, 10.1038/nature13857.