Article (Scientific journals)
About the multifractal nature of Cantor's bijection: Bounds for the Hölder exponent at almost every irrational point
Nicolay, Samuel; Simons, Laurent
2016In Fractals, 24 (2), p. 1650014-1 - 1650014-9
Peer Reviewed verified by ORBi
 

Files


Full Text
fractals.pdf
Publisher postprint (1.27 MB)
Download

All documents in ORBi are protected by a user license.

Send to



Details



Keywords :
Cantor’s Bijection; Hölder Exponent; Multifractal Analysis; Continued Fractions
Abstract :
[en] In this note, we investigate the regularity of Cantor’s one-to-one mapping between the irrational numbers of the unit interval and the irrational numbers of the unit square. In particular, we explore the fractal nature of this map by showing that its Hölder regularity lies between 0.35 and 0.72 almost everywhere (with respect to the Lebesgue measure).
Disciplines :
Mathematics
Author, co-author :
Nicolay, Samuel  ;  Université de Liège > Département de mathématique > Analyse - Analyse fonctionnelle - Ondelettes
Simons, Laurent
Language :
English
Title :
About the multifractal nature of Cantor's bijection: Bounds for the Hölder exponent at almost every irrational point
Publication date :
June 2016
Journal title :
Fractals
ISSN :
0218-348X
eISSN :
1793-6543
Publisher :
World Scientific Publishing Company, Singapore, Singapore
Volume :
24
Issue :
2
Pages :
1650014-1 - 1650014-9
Peer reviewed :
Peer Reviewed verified by ORBi
Available on ORBi :
since 03 June 2016

Statistics


Number of views
105 (24 by ULiège)
Number of downloads
22 (12 by ULiège)

Scopus citations®
 
2
Scopus citations®
without self-citations
2
OpenAlex citations
 
3

Bibliography


Similar publications



Contact ORBi