Crop residue management in arable cropping systems under temperate climate. Part 1: Soil biological and chemical (phosphorus and nitrogen) properties. A review
[en] Interacting soil organisms support biological processes that participate in soil functions, organic matter decomposition, and nutrient cycling. Earthworms and microorganisms play a range of beneficial roles in agricultural systems, including increased organic matter mineralization, nutrient cycling, and soil structure stabilization.
The following aspects of crop residue management effects are examined in this paper: (i) earthworm composition and structure; (ii) soil microbial communities; and (iii) phosphorus (P) and nitrogen (N) element availability and distribution in the soil profile. Conventional tillage (ploughing) is often reported to generate decreased soil organism abundance and diversity, primarily earthworms and microorganisms, as well as a uniform distribution of the nutrients P and N within the ploughed soil horizon. Soil residue incorporation of mineral particles can maintain P and N levels, however returning soil also increases aeration and the activation of microbial activity. Hence, comparisons of tillage effects on soil biological functioning and nutrient cycling remain unclear.
This review highlights the challenges in establishing definitive evidence regarding the effects of crop residue management on soil organisms and nutrient dynamics. The studies examined reported variability in soil and climate, and the complexity of soil processes contributed to the absence of clear findings. Further research is required under temperate climate conditions.
Research Center/Unit :
TERRA Teaching and Research Centre - TERRA
Disciplines :
Agriculture & agronomy
Author, co-author :
Lemtiri, Aboulkacem ; Université de Liège > Ingénierie des biosystèmes (Biose) > Echanges Eau-Sol-Plantes
Degrune, Florine ; Université de Liège > Agronomie, Bio-ingénierie et Chimie (AgroBioChem) > Microbiologie et génomique
Barbieux, Sophie ; Université de Liège > Ingénierie des biosystèmes (Biose) > Echanges Eau-Sol-Plantes
Hiel, Marie-Pierre ; Université de Liège > Agronomie, Bio-ingénierie et Chimie (AgroBioChem) > Phytotechnie des régions tempérées
Chelin, Marie ; Université de Liège > Ingénierie des biosystèmes (Biose) > Echanges Eau-Sol-Plantes
Parvin, Nargish ; Université de Liège > Ingénierie des biosystèmes (Biose) > Echanges Eau-Sol-Plantes
Vandenbol, Micheline ; Université de Liège > Agronomie, Bio-ingénierie et Chimie (AgroBioChem) > Microbiologie et génomique
Francis, Frédéric ; Université de Liège > Agronomie, Bio-ingénierie et Chimie (AgroBioChem) > Entomologie fonctionnelle et évolutive
Colinet, Gilles ; Université de Liège > Ingénierie des biosystèmes (Biose) > Echanges Eau-Sol-Plantes
Language :
English
Title :
Crop residue management in arable cropping systems under temperate climate. Part 1: Soil biological and chemical (phosphorus and nitrogen) properties. A review
Alternative titles :
[en] Gestion des résidus de cultures dans les systèmes de grandes cultures sous climat tempéré. Partie 1 : Propriétés biologique et chimique (phosphore et azote) du sol (synthèse bibliographique)
Publication date :
29 April 2016
Journal title :
Biotechnologie, Agronomie, Société et Environnement
ISSN :
1370-6233
eISSN :
1780-4507
Publisher :
Presses Agronomiques de Gembloux, Gembloux, Belgium
Angers D.A. et al., 1997. Impact of tillage practices on organic carbon and nitrogen storage in cool, humid soils of eastern Canada. Soil Tillage Res., 41(3-4), 191-201.
Beck M.A. & Sanchez P.A., 1994. Soil phosphorus fraction dynamics during 18 years of cultivation on a typic paleudult. Soil Sci. Soc. Am. J., 58(5), 1424-1431.
Berner A. et al., 2008. Crop yield and soil fertility response to reduced tillage under organic management. Soil Tillage Res., 101(1-2), 89-96.
Brennan J. et al., 2014. The effect of tillage system and residue management on grain yield and nitrogen use efficiency in winter wheat in a cool Atlantic climate. Eur. J. Agron., 54, 61-69.
Cardenas E. & Tiedje J.M., 2008. New tools for discovering and characterizing microbial diversity. Curr. Opin. Biotechnol., 19(6), 544-549.
Carpenter S.R. et al., 1998. Nonpoint pollution of surface waters with phosphorus and nitrogen. Ecol. Appl., 8(3), 559-568.
Ceja-Navarro J.A. et al., 2010. Phylogenetic and multivariate analyses to determine the effects of different tillage and residue management practices on soil bacterial communities. Appl. Environ. Microbiol., 76(11), 3685-3691.
Chan K.Y., 2001. An overview of some tillage impacts on earthworm population abundance and diversity - implications for functioning in soils. Soil Tillage Res., 57(4), 179-191.
Chen B. et al., 2014. Soil nitrogen dynamics and crop residues. A review. Agron. Sustainable Dev., 34(2), 429-442.
Christopher S.F. & Lal R., 2007. Nitrogen management affects carbon sequestration in North American cropland soils. Crit. Rev. Plant Sci., 26(1), 45-64.
Coppens F. et al., 2006. Soil moisture, carbon and nitrogen dynamics following incorporation and surface application of labelled crop residues in soil columns. Eur. J. Soil Sci., 57(6), 894-905.
Cordell D., Drangert J.-O. & White S., 2009. The story of phosphorus: global food security and food for thought. Global Environ. Change, 19(2), 292-305.
Curry J.P. & Schmidt O., 2007. The feeding ecology of earthworms-a review. Pedobiologia, 50(6), 463-477.
De Oliveira T., Bertrand M. & Roger-Estrade J., 2012. Short-term effects of ploughing on the abundance and dynamics of two endogeic earthworm species in organic cropping systems in northern France. Soil Tillage Res., 119, 76-84.
Degrune F. et al., 2015. A novel sub-phylum method discriminates better the impact of crop management on soil microbial community. Agron. Sustainable Dev., 35, 1157-1166.
Deubel A., Hofmann B. & Orzessek D., 2011. Long-term effects of tillage on stratification and plant availability of phosphate and potassium in a loess chernozem. Soil Tillage Res., 117, 85-92.
Dolan M.S. et al., 2006. Soil organic carbon and nitrogen in a Minnesota soil as related to tillage, residue and nitrogen management. Soil Tillage Res., 89(2), 221-231.
Eriksen-Hamel N.S. et al., 2009. Earthworm populations and growth rates related to long-term crop residue and tillage management. Soil Tillage Res., 104(2), 311-316.
Fierer N., Shimel J.P. & Holden P.A., 2003. Variations in microbial community composition through two soil depth profiles. Soil Biol. Biochem., 35, 167-176.
Fortune T. et al., 2005. Reduced cultivations - Update from Oak park experiments. In: Proceedings of the National tillage conference 2005, Teagasc, Carlow, Ireland, 18-34.
Franzluebbers A.J., 2002. Soil organic matter stratification ratio as an indicator of soil quality. Soil Tillage Res., 66(2), 95-106.
Harrison A.F., 1987. Soil organic phosphorus: a review of world literature. Wallingford, UK: CABI.
Helgason B.L., Walley F.L. & Germida J.J., 2009. Fungal and bacterial abundance in long-term no-till and intensive-till soils of the Northern Great Plains. Soil Sci. Soc. Am. J., 73(1), 120-127.
Helgason B.L., Walley F.L. & Germida J.J., 2010. Long-term no-till management affects microbial biomass but not community composition in Canadian prairie agroecosytems. Soil Biol. Biochem., 42(12), 2192-2202.
Hiel et al., 2016. Crop residue management in arable cropping systems under a temperate climate. Part 2: Soil physical properties and crop production. A review. Biotechnol. Agron. Soc. Environ., 20(S1), 245-256.
Höflich G. et al., 1999. Influence of long-term conservation tillage on soil and rhizosphere microorganisms. Biol. Fertil. Soils, 29(1), 81-86.
Holland J.M., 2004. The environmental consequences of adopting conservation tillage in Europe: reviewing the evidence. Agric. Ecosyst. Environ., 103(1), 1-25.
Johnson-Maynard J.L., Umiker K.J. & Guy S.O., 2007. Earthworm dynamics and soil physical properties in the first three years of no-till management. Soil Tillage Res., 94(2), 338-345.
Kallenbach C. & Grandy A.S., 2011. Controls over soil microbial biomass responses to carbon amendments in agricultural systems: a meta-analysis. Agric. Ecosyst. Environ., 144(1), 241-252.
Kladivko E.J., 2001. Tillage systems and soil ecology. Soil Tillage Res., 61(1-2), 61-76.
Lemtiri A. et al., 2014. Impacts of earthworms on soil components and dynamics. A review. Biotechnol. Agron. Soc. Environ., 18(1), 121-133.
Lemtiri A. et al., 2015. Earthworms Eisenia fetida affect the uptake of heavy metals by plants Vicia faba and Zea mays in metal-contaminated soils. Appl. Soil Ecol. (in press), http://dx.doi.org/10.1016/j.apsoil.2015.11.021
Malhi S.S. et al., 2006. Tillage, nitrogen and crop residue effects on crop yield, nutrient uptake, soil quality, and greenhouse gas emissions. Soil Tillage Res., 90(1-2), 171-183.
Malhi S.S. et al., 2010. Long-term tillage, straw and N rate effects on quantity and quality of organic C and N in a Gray Luvisol soil. Nutr. Cycling Agroecosyst., 90(1), 1-20.
McNeill A. & Unkovich M., 2007. The nitrogen cycle in terrestrial ecosystems. In: Marschner D.P. & Rengel P.D.Z., eds. Nutrient cycling in terrestrial ecosystems. Soil biology. Berlin; Heidelberg, Deutschland: Springer, 37-64.
Morris N.L. et al., 2010. The adoption of non-inversion tillage systems in the United Kingdom and the agronomic impact on soil, crops and the environment. A review. Soil Tillage Res., 108(1-2), 1-15.
Navarro-Noya Y.E. et al., 2013. Relative impacts of tillage, residue management and crop-rotation on soil bacterial communities in a semi-arid agroecosystem. Soil Biol. Biochem., 65, 86-95.
Noack S.R. et al., 2012. Crop residue phosphorus: speciation and potential bio-availability. Plant Soil, 359(1-2), 375-385.
Nuutinen V., 1992. Earthworm community response to tillage and residue management on different soil types in southern Finland. Soil Tillage Res., 23(3), 221-239.
Ohno T. & Erich M.S., 1997. Inhibitory effects of crop residue-derived organic ligands on phosphate adsorption kinetics. J. Environ. Qual., 26(3), 889-895.
Palm C.A., Myers R.J. & Nandwa S.M., 1997. Combined use of organic and inorganic nutrient sources for soil fertility maintenance and replenishment. In: Buresh R.J., Sanchez P.A. & Calhoun F., eds. Replenishing soil fertility in Africa. Madison, WI, USA: Soil Science Society of America (SSSA), 193-217.
Paul E.A., ed., 2014. Soil microbiology, ecology and biochemistry. London: Academic Press.
Peigné J. et al., 2009. Earthworm populations under different tillage systems in organic farming. Soil Tillage Res., 104(2), 207-214.
Piegholdt C. et al., 2013. Long-term tillage effects on the distribution of phosphorus fractions of loess soils in Germany. J. Plant Nutr. Soil Sci., 176(2), 217-226.
Renneson M. et al., 2013. Relationships between the P status of surface and deep horizons of agricultural soils under various cropping systems and for different soil types: a case study in Belgium. Soil Use Manage., 29(suppl 1), 94-102.
Roesch L.F.W. et al., 2007. Pyrosequencing enumerates and contrasts soil microbial diversity. ISME J., 1(4), 283-290.
Rosas-Medina M.Á. et al., 2010. Effect of tillage, sampling date and soil depth on earthworm population on maize monoculture with continuous stover restitutions. Soil Tillage Res., 108(1), 37-42.
Schmidt O., Clements R.O. & Donaldson G., 2003. Why do cereal-legume intercrops support large earthworm populations? Appl. Soil Ecol., 22(2), 181-190.
Sharpley A.N., 2003. Soil mixing to decrease surface stratification of phosphorus in manured soils. J. Environ. Qual., 32(4), 1375-1384.
Shi Y. et al., 2013. Seasonal variation of microbial biomass, activity, and community structure in soil under different tillage and phosphorus management practices. Biol. Fertil. Soils, 49(7), 803-818.
Shuster W.D. et al., 2003. Population dynamics of ambient and altered earthworm communities in row-crop agroecosystems in the Midwestern U.S.: the 7th international symposium on earthworm ecology, Cardiff, Wales, 2002. Pedobiologia, 47(5-6), 825-829.
Simonsen J. et al., 2010. Endogeic and anecic earthworm abundance in six Midwestern cropping systems. Appl. Soil Ecol., 44(2), 147-155.
Singh J.S., Pandey V.C. & Singh D.P., 2011. Efficient soil microorganisms: a new dimension for sustainable agriculture and environmental development. Agric. Ecosyst. Environ., 140(3-4), 339-353.
van Capelle C., Schrader S. & Brunotte J., 2012. Tillage-induced changes in the functional diversity of soil biota - A review with a focus on German data. Eur. J. Soil Biol., 50, 165-181.
van Groenigen K.-J. et al., 2010. Abundance, production and stabilization of microbial biomass under conventional and reduced tillage. Soil Biol. Biochem., 42(1), 48-55.
Varinderpal-Singh, Dhillon N.S. & Brar B.S., 2006. Effect of incorporation of crop residues and organic manures on adsorption/desorption and bio-availability of phosphate. Nutr. Cycling Agroecosyst., 76(1), 95-108.
Vitousek P.M., 2004. Nutrient cycling and limitation: Hawai’i as a model system. Princeton, NJ, USA: Princeton University Press.
Wang J.B. et al., 2011. Surface soil phosphorus and phosphatase activities affected by tillage and crop residue input amounts. Plant Soil Environ., 57(6), 251-257.
Wang J.J. et al., 2012. Effects of tillage and residue management on soil microbial communities in north China. Plant Soil Environ., 58(1), 28-33.
Wardle D.A., 1995. Impacts of disturbance on detritus food webs in agro-ecosystems of contrasting tillage and weed management practices. Adv. Ecol. Res., 26, 105-185.
Wyss E. & Glasstetter M., 1992. Tillage treatments and earthworm distribution in a Swiss experimental corn field. Soil Biol. Biochem., 24(12), 1635-1639.
Zaller J.G. & Köpke U., 2004. Effects of traditional and biodynamic farmyard manure amendment on yields, soil chemical, biochemical and biological properties in a long-term field experiment. Biol. Fertil. Soils, 40(4), 222-229.