A. Moiola, and E.A. Spence Is the Helmholtz equation really sign-indefinite? SIAM Rev. 56 2 2014 274 312
O.G. Ernst, and M.J. Gander Why it is difficult to solve Helmholtz problems with classical iterative methods Ivan G. Graham, Thomas Y. Hou, Omar Lakkis, Robert Scheichl, Numerical Analysis of Multiscale Problems Lecture Notes in Computational Science and Engineering vol. 83 2012 Springer Berlin, Heidelberg 325 363
A. Toselli, and O. Widlund Domain decomposition methods - algorithms and theory Springer Series in Computational Mathematics vol. 34 2005 Springer-Verlag Berlin
M. Gander Optimized Schwarz methods SIAM J. Numer. Anal. 44 2 2006 699 731
Y. Boubendir An analysis of the BEM-FEM non-overlapping domain decomposition method for a scattering problem J. Comput. Appl. Math. 204 2 2007 282 291
Y. Boubendir, X. Antoine, and C. Geuzaine A quasi-optimal non-overlapping domain decomposition algorithm for the Helmholtz equation J. Comput. Phys. 231 2 2012 262 280
Y. Boubendir, A. Bendali, and M.B. Fares Coupling of a non-overlapping domain decomposition method for a nodal finite element method with a boundary element method Internat. J. Numer. Methods Engrg. 73 11 2008 1624 1650
M.J. Gander, F. Magoulès, and F. Nataf Optimized Schwarz methods without overlap for the Helmholtz equation SIAM J. Sci. Comput. 24 1 2002 38 60 (Electronic)
A. Alonso-Rodriguez, and L. Gerardo-Giorda New nonoverlapping domain decomposition methods for the harmonic Maxwell system SIAM J. Sci. Comput. 28 1 2006 102 122
B. Després, P. Joly, and J.E. Roberts A domain decomposition method for the harmonic Maxwell equations Iterative Methods in Linear Algebra (Brussels, 1991) 1992 North-Holland Amsterdam 475 484
V. Dolean, J.M. Gander, S. Lanteri, J.-F. Lee, Z. Peng, Optimized Schwarz methods for curl-curl time-harmonic Maxwell's equations, 2013.
V. Dolean, M.J. Gander, and L. Gerardo-Giorda Optimized Schwarz methods for Maxwell's equations SIAM J. Sci. Comput. 31 3 2009 2193 2213
M. El Bouajaji, X. Antoine, and C. Geuzaine Approximate local magnetic-to-electric surface operators for time-harmonic Maxwell's equations J. Comput. Phys. 279 15 2014 241 260
M. El Bouajaji, V. Dolean, M. Gander, and S. Lanteri Optimized Schwarz methods for the time-harmonic Maxwell equations with damping SIAM J. Sci. Comput. 34 4 2012 A2048 A2071
Z. Peng, and J. Lee A scalable nonoverlapping and nonconformal domain decomposition method for solving time-harmonic Maxwell equations in R3 SIAM J. Sci. Comput. 34 3 2012 A1266 A1295
Z. Peng, V. Rawat, and J.-F. Lee One way domain decomposition method with second order transmission conditions for solving electromagnetic wave problems J. Comput. Phys. 229 4 2010 1181 1197
V. Rawat, and J.-F. Lee Nonoverlapping domain decomposition with second order transmission condition for the time-harmonic Maxwell's equations SIAM J. Sci. Comput 32 6 2010 3584 3603
J.-C. Nédélec Acoustic and electromagnetic equations Applied Mathematical Sciences vol. 144 2001 Springer-Verlag New York Integral representations for harmonic problems
F. Nataf, and F. Nier Convergence rate of some domain decomposition methods for overlapping and nonoverlapping subdomains Numer. Math. 75 1997 357 377
F. Nataf Interface connections in domain decomposition methods NATO Sci. Ser. II 75 2001
B. Després Méthodes de décomposition de domaine pour les problèmes de propagation d'ondes en régime harmonique. Le théorème de Borg pour l'équation de Hill vectorielle (Ph.D. thesis) 1991 Rocquencourt, Thèse, Université de Paris IX (Dauphine) Paris
C. Stolk A rapidly converging domain decomposition method for the Helmholtz equation J. Comput. Phys. 241 0 2013 240 252
B. Engquist, and L. Ying Sweeping preconditioner for the Helmholtz equation: moving perfectly matched layers Multiscale Model. Simul. 9 2 2011 686 710
A. Vion, and C. Geuzaine Double sweep preconditioner for optimized schwarz methods applied to the Helmholtz problem J. Comput. Phys. 266 0 2014 171 190
A. Vion, C. Geuzaine, Parallel double sweep preconditioner for the optimized Schwarz algorithm applied to high frequency Helmholtz and Maxwell equations, in: LNCSE, Proc. of DD22, 2014.
P. Dular, C. Geuzaine, GetDP Web page, http://getdp.info, 2015. [Online]. Available: http://getdp.info.
P. Dular, C. Geuzaine, F. Henrotte, and W. Legros A general environment for the treatment of discrete problems and its application to the finite element method IEEE Trans. Magn. 34 5 1998 3395 3398
C. Geuzaine GetDP: a general finite-element solver for the de Rham complex PAMM, Vol. 7 Issue 1. Special Issue: Sixth International Congress on Industrial Applied Mathematics (ICIAM07) and GAMM Annual Meeting, Zürich 2007 vol. 7 2008 Wiley 1010603 1010604
C. Geuzaine, J.-F. Remacle, Gmsh Web page, http://gmsh.info, 2015. [Online]. Available: http://gmsh.info.
C. Geuzaine, and J.-F. Remacle Gmsh: A 3-D finite element mesh generator with built-in pre- and post-processing facilities Internat. J. Numer. Methods Engrg. 79 11 2009 1309 1331
C. Geuzaine, F. Henrotte, E. Marchandise, J.-F. Remacle, P. Dular, R. Vazquez Sabariego, ONELAB: Open Numerical Engineering LABoratory, in: Proceedings of the 7th European Conference on Numerical Methods in Electromagnetism, NUMELEC2012, 2012.
C. Geuzaine, F. Henrotte, E. Marchandise, J.-F. Remacle, R. Vazquez Sabariego, ONELAB Web page, http://onelab.info, 2015. [Online]. Available: http://onelab.info.
P. Jolivet, V. Dolean, F. Hecht, F. Nataf, C. Prud'Homme, and N. Spillane High performance domain decomposition methods on massively parallel architectures with freefem++ J. Numer. Math. 20 3-4 2012 287 302
A. Samake, V. Chabannes, C. Picard, and C. Prud'Homme Domain decomposition methods in feel++ Domain Decomposition Methods in Science and Engineering XXI 2014 Springer 397 405
P. Jolivet, F. Hecht, F. Nataf, and C. Prud'homme Scalable domain decomposition preconditioners for heterogeneous elliptic problems Proceedings of the International Conference on High Performance Computing, Networking, Storage and Analysis, SC'13 2013 ACM New York, NY, USA 80:1 80:11
P. Jolivet, F. Nataf, Hpddm: High-Performance Unified framework for Domain Decomposition methods, MPI-C++ library. https://github.com/hpddm/hpddm.
S. Balay, M.F. Adams, J. Brown, P. Brune, K. Buschelman, V. Eijkhout, W.D. Gropp, D. Kaushik, M.G. Knepley, L. Curfman McInnes, K. Rupp, B.F. Smith, and H. Zhang PETSc Users Manual. Technical Report ANL-95/11 - Revision 3.4 2013 Argonne National Laboratory
J.-P. Berenger A perfectly matched layer for the absorption of electromagnetic waves J. Comput. Phys. 114 2 1994 185 200
F. Collino, and P. Monk The perfectly matched layer in curvilinear coordinates SIAM J. Sci. Comput. 19 6 1998 2061 2090 (Electronic)
A. Bayliss, M. Gunzburger, and E. Turkel Boundary conditions for the numerical solution of elliptic equations in exterior regions SIAM J. Appl. Math. 42 2 1982 430 451
B. Engquist, and A. Majda Absorbing boundary conditions for the numerical simulation of waves Math. Comp. 31 139 1977 629 651
X. Antoine, C. Geuzaine, and K. Ramdani Computational methods for multiple scattering at high frequency with applications to periodic structures calculations Wave Propagation in Periodic Media Progress in Computational Physics vol. 1 2010 73 107
D. Givoli Computational absorbing boundaries Steffen Marburg, Bodo Nolte, Computational Acoustics of Noise Propagation in Fluids - Finite and Boundary Element Methods 2008 Springer Berlin, Heidelberg 145 166
Y. Saad, and M.H. Schultz GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems SIAM J. Sci. Stat. Comput. 7 3 1986 856 869
M. Gander, L. Halpern, Méthode de décomposition de domaine. Encyclopédie électronique pour les ingénieurs, 2012.
A. Bermúdez, L. Hervella-Nieto, A. Prieto, and R. Rodríguez An optimal perfectly matched layer with unbounded absorbing function for time-harmonic acoustic scattering problems J. Comput. Phys. 223 2 2007 469 488
A. Modave, E. Delhez, and C. Geuzaine Optimizing perfectly matched layers in discrete contexts Internat. J. Numer. Methods Engrg. 99 6 2014 410 437
A. Vion, R. Bélanger-Rioux, L. Demanet, and C. Geuzaine A DDM double sweep preconditioner for the Helmholtz equation with matrix probing of the DtN map Mathematical and Numerical Aspects of Wave Propagation WAVES 2013 2013 June
M. El Bouajaji, B. Thierry, X. Antoine, and C. Geuzaine A quasi-optimal domain decomposition algorithm for the time-harmonic Maxwell's equations J. Comput. Phys. 294 1 2015 38 57
C. Geuzaine High order hybrid finite element schemes for Maxwell's equations taking thin structures and global quantities into account (Ph.D. thesis) 2001 Université de Liège Belgium
S. Balay, M.F. Adams, J. Brown, P. Brune, K. Buschelman, V. Eijkhout, W.D. Gropp, D. Kaushik, M.G. Knepley, L. Curfman McInnes, K. Rupp, B.F. Smith, H. Zhang, PETSc Web page. http://www.mcs.anl.gov/petsc, 2015.
S. Balay, W.D. Gropp, L. Curfman McInnes, and B.F. Smith Efficient management of parallelism in object oriented numerical software libraries E. Arge, A.M. Bruaset, H.P. Langtangen, Modern Software Tools in Scientific Computing 1997 Birkhäuser Press 163 202
P. Dular, C. Geuzaine, GetDP Reference Manual: The documentation for GetDP 2.5, A General environment for the treatment of Discrete Problems. University of Liège.
C. Geuzaine, J.-F. Remacle, Gmsh Reference Manual: The documentation for Gmsh 2.9, A finite element mesh generator with built-in pre- and post-processing facilities.
M.J. Gander, L. Halpern, F. Nataf, Optimized Schwarz methods, in: Proceedings of the 12th International Conference on Domain Decomposition, ddm.org, 2000.
F. Ben Belgacem, A. Buffa, and Y. Maday The mortar finite element method for 3D Maxwell equations: First results SIAM J. Numer. Anal. 39 3 2001 880 901
C. Bernardi, Y. Maday, and A.T. Patera A new nonconforming approach to domain decomposition: the mortar element method H. Brezis, J. Lions, Collège de France Seminar XI 1994 Pitman 13 51
M. Gander, C. Japhet, Y. Maday, and F. Nataf A new cement to glue nonconforming grids with robin interface conditions: The finite element case Domain Decomposition Methods in Science and Engineering Lecture Notes in Computational Science and Engineering vol. 40 2005 Springer Berlin, Heidelberg 259 266
C. Japhet, Y. Maday, and F. Nataf A new interface cement equilibrated mortar (NICEM) method with robin interface conditions: the P1 finite element case Math. Models Methods Appl. Sci. 23 12 2013 2253 2292