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Abstract

We present an open finite element framework, called GetDDM, for testing optimized
Schwarz domain decomposition techniques for time-harmonic wave problems. After a re-
view of Schwarz domain decomposition methods and associated transmission conditions, we
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discuss the implementation, based on the open source software GetDP and Gmsh. The
solver, along with ready-to-use examples for Helmholtz and Maxwell’s equations, is freely
available online for further testing.

Keywords: Domain Decomposition Methods; Parallel computing; Finite Element Method;
Acoustics; Electromagnetics.

0 Program Summary

Manuscript title: GetDDM: an Open Framework for Testing Optimized Schwarz Methods for Time-
Harmonic Wave Problems
Authors: B. Thierry, A.Vion, S. Tournier, M. El Bouajaji, D. Colignon, N. Marsic, X. Antoine, C.
Geuzaine.
Program title: GetDDM
Licensing provisions: Standard CPC licence
Programming language: Gmsh (http://gmsh.info) and GetDP (http://getdp.info)
Computer(s) for which the program has been designed: PC, Mac, Tablets, Computer clusters
Operating system(s) for which the program has been designed: Linux, Windows, MacOSX
RAM required to execute with typical data: From 512 Megabytes upwards.
Has the code been vectorised or parallelized?: Yes
Number of processors used: All available.
Keywords: Domain Decomposition Methods; Parallel computing; Finite Element Method; Acoustics;
Electromagnetics.
CPC Library Classification: 4.3, 4.12, 6.5, 10
Nature of problem: Computing the solution of large scale time-harmonic acoustic and electromagnetic
wave problems.
Solution method: Finite element method with optimized Schwarz domain decomposition method.
Running time: From a few seconds for simple problems to several days for large-scale simulations.

1 Introduction

We present an open-source framework for testing Schwarz-type domain decomposition methods
for time-harmonic wave problems. Such problems are known to be computationally challenging,
especially in the high-frequency regime. Among the various approaches that can be used to solve
them, the Finite Element Method (FEM) with an Absorbing Boundary Condition (ABC) or a
Perfectly Matched Layer (PML) is widely used for its ability to handle complex geometrical con-
figurations and materials with non-homogeneous properties. However, the brute-force applica-
tion of the FEM in the high-frequency regime leads to the solution of very large, complex-valued
and possibly indefinite linear systems [47]. Direct sparse solvers do not scale well for such prob-
lems, and Krylov subspace iterative solvers exhibit slow convergence or diverge, while efficiently
preconditioning proves difficult [28]. Domain decomposition methods provide an alternative,
iterating between subproblems of smaller sizes, amenable to sparse direct solvers [57].

Among the different families of domain decomposition techniques, this work focuses on op-
timized Schwarz methods [29], which are well suited for time-harmonic wave problems [12, 13,
14, 33, 1, 17, 18, 19, 23, 24, 51, 52, 53] and can be used with or without overlap between the
subdomains. The convergence rate of these methods strongly depends on the transmission con-
dition enforced on the interfaces between the subdomains. The optimal convergence is obtained
by using as transmission condition on each interface the Dirichlet-to-Neumann (DtN) map [50]
related to the complementary of the subdomain of interest [49, 48]. For acoustic waves, this
DtN map links the normal derivative and the trace of the acoustic pressure on the interface.
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For electromagnetic waves, it links the magnetic and the electric surface currents (and is re-
ferred to in this case as the Magnetic-to-Electric, or MtE, map) [23]. However, using the DtN
leads to a very expensive numerical procedure in practice, as this operator is non-local. A great
variety of techniques based on local transmission conditions have therefore been proposed to
build practical algorithms, both for the acoustic case [16, 12, 13, 14, 33] and the electromag-
netic one [1, 17, 18, 19, 23, 24, 51, 52, 53]. Recently, PMLs have also been used for this same
purpose [56, 27, 59, 60].

The aim of the present paper is twofold. First, it aims to provide a concise review of the
most common transmission operators for optimized Schwarz methods applied to time-harmonic
acoustic and electromagnetic wave problems, with the corresponding mathematical background.
Second, it introduces the flexible finite element framework GetDDM (“a General environment
for the treatment of Domain Decomposition Methods”) to test and compare them, based on
the open source software GetDP1 [21, 22, 35] and Gmsh2 [39, 40]. While GetDDM is written
in C++, all the problem-specific data (geometry description, finite element formulation with
appropriate transmission condition, domain decomposition algorithm) are directly written in
input ASCII text files, using the code’s built-in language. This general implementation allows
to solve a wide variety of problems with the same software, and hides all the complexities of
the finite element implementation from the end-user (in particular the MPI-based paralleliza-
tion). Moreover, the software is designed to work both on small- and medium-scale problems
(on a workstation, a laptop, a tablet or even a mobile phone) and on large-scale problems on
high-performance computing clusters, without changing the input files. The complete imple-
mentation of all the techniques reviewed in this paper is freely available online on the web site
of the ONELAB project3 [36, 37], together with various 2D and 3D sample geometries, for both
Helmholtz and Maxwell’s equations. While other open source codes provide facilities for do-
main decomposition methods, either linked to finite element kernels (e.g. FreeFem++ [43] or
Feel++ [55] via the HPDDM framework [44, 45]), or from a purely algebraic perspective (e.g.
PETSc [3]), GetDDM adopts a complementary point of view. It focuses on Schwarz methods
where the transmission conditions play a central role and provides a simple, flexible and ready-
to-use software environment where the weak formulations of these transmission conditions can
be automatically transcribed at the discrete level, with a direct link to their symbolic math-
ematical and physical structure. The authors hope that this approach will help the scientific
community to test and compare different optimized Schwarz domain decomposition techniques
by focusing on the mathematics of the transmission conditions, while not having to worry (too
much) about the implementation.

The paper is organized as follows. The first section describes the acoustic and the electromag-
netic scattering problems and the associated optimized Schwarz methods; the main transmission
operators and the weak formulations are given, in view of their transcription in GetDDM. The
next section describes the main features of GetDDM and provides code samples for the implemen-
tation of domain decomposition problems. Finally, the article concludes with some illustrative
numerical results and perspectives for further development.

1http://getdp.info
2http://gmsh.info
3http://onelab.info/wiki/GetDDM
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2 Optimized Schwarz Methods for Time-Harmonic Wave Prop-
agation

The mathematical framework of optimized Schwarz methods is presented in this section to-
gether with a review of the different transmission operators, for both the acoustic and the
electromagnetic cases. As the goal is to implement them using a finite element method, the
weak formulations of the different problems are also provided.

2.1 Acoustic Waves: Helmholtz Equation

2.1.1 Mono-Domain Problem

Let us consider an open subset Ω− of Rd, where d = 1, 2, 3 is the dimension, with boundary Γ,
such that its complementary Ω+ = Rd \Ω− is connected. When illuminated by a time-harmonic
incident wave uinc, the obstacle Ω− generates a complex-valued scattered field u, solution of the
following problem, where the time dependence is implicit and of the form e−iωt,

(∆ + k2)u = 0 in Ω+,
u = −uinc on Γ,
u outgoing.

(1)

The operator ∆ =
∑d

i=1 ∂
2
xi is the Laplacian operator and k = ω/c is the real and strictly

positive wavenumber (c = c(x) being the local speed of sound in the medium). In what follows
a ·b denotes the inner product between two complex-valued vectors a and b in C3, where z is the
complex conjugate of z ∈ C. The associated norm is ||a|| :=

√
a · a. Here, a Dirichlet boundary

condition on Γ has been set (i.e. we consider a sound-soft obstacle), but other conditions can be
studied such as Neumann, Fourier or even penetrable obstacles. The outgoing condition stands
for the Sommerfeld radiation condition (ı being the square root of −1)

lim
‖x‖→∞

‖x‖
d−1
2

(
∇u · x

‖x‖
− ıku

)
= 0,

which ensures that, first, problem (1) is uniquely solvable and, second, that the scattered field
u is directed from Ω− to infinity.

To solve problem (1) using the finite element method, the (unbounded) domain Ω+ must be
truncated, using for example a Perfectly Matched Layer (PML) [8, 15] or a fictitious boundary
Γ∞ with an Absorbing Boundary Condition (ABC) [6, 26] (see e.g. [2] for a review of different
methods). With an ABC on a fictitious boundary, the aim is then to find the field û approxi-
mating u on the bounded domain Ω of boundary Γ∞

⋃
Γ. After merging the notations û and u

for simplicity, the problem to be solved can be written as follows:
(∆ + k2)u = 0 in Ω,

u = −uinc on Γ,
∂nu+ Bu = 0 on Γ∞,

(2)

where the unit normal vector n is directed outside Ω (and thus inside Ω− on Γ). The simplest
local ABC, i.e., the Sommerfeld radiation condition at finite distance (zeroth-order condition),
is obtained by setting

Bu = −ıku. (3)

The extension to more accurate ABCs or PMLs is standard [41].

4



2.1.2 Domain Decomposition and Transmission Operators

Substructured formulation. The domain Ω is now decomposed into Ndom disjoint subdo-
mains Ωi (the substructures) without overlap. For every i = 0, . . . , Ndom − 1, let Γi = Γ

⋂
∂Ωi,

Γ∞i = Γ∞
⋂
∂Ωi; for j = 0, . . . , Ndom − 1, j 6= i, the transmission boundary Σij = Σji =

∂Ωi
⋂
∂Ωj is introduced. To simplify, let D := {0, . . . , Ndom − 1} be the set of indices of the

subdomains, and for i ∈ D, let Di := {j ∈ D such that j 6= i and Σij 6= ∅} be the set of indices
of the subdomains sharing at least a point with Ωi (we will call them the domains connected to
Ωi). Finally, for all i ∈ D, the unit normal ni is directed into the exterior of Ωi and thus inside
the obstacle Ω− (if Γi 6= ∅).

The additive Schwarz domain decomposition method can be described as follows, at iteration
n+ 1:

1. For all i ∈ D, compute un+1
i solution to
(∆ + k2)un+1

i = 0 in Ωi,

un+1
i = −uinc on Γi,

∂niu
n+1
i + Bun+1

i = 0 on Γ∞i ,

∂niu
n+1
i + Sun+1

i = gnij on Σij , ∀j ∈ Di.

(4)

2. For all i ∈ D and j ∈ Di, update the interface unknowns according to:

gn+1
ji = −∂niun+1

i + Sun+1
i = −gnij + 2Sun+1

i , on Σij . (5)

The operator S is an transmission operator, which will be detailed later. The (n+ 1)th iteration
of the above algorithm can be rewritten in the following more compact form:

1. For all i ∈ D, compute the volume solution un+1
i of (4), written as un+1

i = Vi(u
inc, gn),

where gn = (gnji)i∈D,j∈Di is the vector collecting all the interface unknowns.

2. For all i ∈ D and j ∈ Di, update the surface fields gn+1
ji following (5), written as gn+1

ji =

Tji(g
n
ij , u

n+1
i ).

In (4) we have only considered the case of Dirichlet sources; other kinds such as volumic
sources are of course possible and must be treated in the same way through the algorithm. We
will refer to them as physical sources, as opposed to the artificial sources gnij on the transmission
boundaries.

The algorithm described by (4) and (5) can be interpreted as a Jacobi iteration applied to
a linear operator equation. Indeed, for every n ∈ N and by linearity, the field un+1

i can be
decomposed as un+1

i = vn+1
i + ũn+1

i , where

vn+1
i = Vi(u

inc, 0) and ũn+1
i = Vi(0, g

n). (6)

The quantity vn+1
i is independent of the iteration number n and can hence be written as vi :=

vni , ∀n ∈ N,∀i ∈ D. Equation (5) then becomes

gn+1
ji = Tji(g

n
ij , u

n+1
i ) = Tji(g

n
ij , ũ

n+1
i ) + 2Svi, on Σij . (7)

Let us introduce the vector b = (bji)i∈D,j∈Di , with bji = 2(Svi)|Σij , and the operator A : gn 7→
Agn such that

∀i ∈ D
{
ũn+1
i = Vi(0, g

n),

(Agn)ji = Tji(g
n
ij , ũ

n+1
i ), ∀j ∈ Di.

(8)
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One iteration of the domain decomposition algorithm then corresponds to

gn+1 = Agn + b, (9)

which is one iteration of the Jacobi method applied to the system

(I − A)g = b, (10)

where I is the identity operator. Any iterative linear solver can be applied to (10), as for
example Krylov subspace methods such as GMRES [54]. When using a Krylov subspace solver,
the method is called a substructured preconditioner [30].

It is worth noting that the iteration unknowns in (9), (10) are the surface quantities g
and not the volume unknowns u. Obtaining the volume quantities from the surface unknowns
corresponds to solving ui = Vi(uinc, g), on every subdomain Ωi. A summary of the Schwarz
method with Krylov solver is given in Algorithm 1.

Algorithm 1 Schwarz algorithm with Krylov solver.

1. Compute the right hand side b:{
∀i ∈ D, vi = Vi(uinc, 0),
∀i ∈ D,∀j ∈ Di, bji = Tji(0, vi).

2. Solve system (I − A)g = b iteratively using a Krylov subspace solver, where A is defined
by (8).

3. At convergence, compute the final solution: ∀i ∈ D, ui = Vi(uinc, g).

Transmission operator. The convergence rate of the iterative solver is strongly linked to
the choice of the transmission operator S [13]. The optimal transmission operator would be
the Dirichlet-to-Neumann (DtN) map for the complement of each subdomain [49, 48], but this
operator is however non-local, which makes it very expensive to use computationally. Different
local approximations have hence been proposed, based on polynomial or rational approxima-
tions of the total symbol of the surface free-space DtN, or by using a volume representation
through Perfectly Matched Layers. Among those approximations, four are detailed below and
are implemented in GetDDM for a generic transmission boundary Σ:

• Evanescent Modes Damping Algorithm [12, 14]:

SIBC(χ)u = (−ık + χ)u,

where χ is a real constant. This zeroth-order polynomial approximation is a generalization
of the Després condition [17], for which χ = 0. In what follows, we will denote this family
of impedance transmission conditions as IBC(χ).

• Optimized second-order transmission condition [33]:

SGIBC(a,b)u = au+ b∆Σu, (11)

where ∆Σ is the Laplace-Beltrami operator on Σ, and a and b are two complex numbers
obtained by solving a min-max optimization problem on the rate of convergence. This
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condition corresponds to a second-order polynomial approximation of the DtN symbol. In
what follows, we will denote this family of generalized impedance transmission conditions
as GIBC(a, b). A zeroth-order optimized condition can be constructed in a similar way.

• Padé-localized square-root transmission condition [13]:

SGIBC(Np, α, ε)u = −ıkC0u− ık
Np∑
`=1

A`divΣ

(
1

k2
ε

∇Σ

)(
I +B`divΣ

(
1

k2
ε

∇Σ

))−1

u, (12)

where

kε = k + iε, (13)

with ε = 0.39k1/3H2/3, H being the local mean curvature of the interface. The coefficients
C0, A` and B` are given by

C0 = eıα/2RNp
(
e−ıα − 1

)
, A` =

e−
ıα
2 a`

(1 + b`(e−ıα − 1))2
, B` =

e−ıαb`
1 + b`(e−ıα − 1)

, (14)

where α is a rotation angle in the complex plane (usually taken as π/4) and RNp are the
standard real-valued Padé approximation of order Np of

√
1 + z:

RNp(z) = 1 +

Np∑
`=1

a`z

1 + b`z
,

with

a` =
2

2Np + 1
sin2

(
`π

2Np + 1

)
and b` = cos2

(
`π

2Np + 1

)
. (15)

This transmission condition corresponds to a rational approximation of the DtN symbol. In
what follows, we will denote this family of generalized impedance transmission conditions
as GIBC(Np, α, ε).

• PML transmission condition [56, 27, 59, 60]: The operator SPML(σ) is constructed by
appending a layer ΩPML to the transmission interface, in which a PML transformation
with absorption profile σ is applied. For example, in cartesian coordinates, the profile

σ(xPML) =
1

k(xPML − δ)

can be used, where δ is the thickness of the PML layer and xPML is the local coordinate
inside the PML [9, 46].

All these methods are referred to as optimized Schwarz domain decomposition methods.
Note that GIBC(Np, α, ε) and PML(σ) have in common that they introduce additional un-
knowns, whereas the other two transmission conditions do not. Also, the first three transmis-
sion conditions can be formulated explicitly through sparse surface equations (see e.g. the weak
formulations (18)–(23) below), while a sparse formulation of the PML transmission condition
requires a volume representation (see e.g. (24)–(25)), a surface representation being dense [58].
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2.1.3 Weak Formulations

The finite element method is based on the weak formulations of the partial differential equations.
Two different kinds of PDEs are considered when using optimized Schwarz methods: a volume
system (here the Helmholtz equation) represented by the operators Vi, and a surface system on
the transmission boundaries, represented by Tji. For the sake of clarity, the weak formulations
are first given for a generic transmission operator S. For conciseness, we develop the case
where there is no contribution on ∂Σij through integration by parts. Nevertheless, in some
situations (e.g. when Σij

⋂
Γ∞ 6= ∅), care should be taken to include these terms into the weak

formulations.

Generic weak formulations. Without loss of generality, only the case of a particular sub-
domain Ωi, for i ∈ D, with no incident wave (homogeneous Dirichlet boundary condition) is
detailed. We consider the general setting where PML layers ΩPML

i = ∪j∈DiΩPML
ij are potentially

appended to the artificial interfaces Σij , and define Ω∗i := Ωi∪ΩPML
i . In what follows, the space

H1(Ω∗i ) := {ũi ∈ L2(Ω∗i ) such that ∇ũi ∈ (L2(Ω∗i ))
3} is the classical Sobolev space and H1

0 (Ω∗i )
is the space of functions ũi ∈ H1(Ω∗i ) such that ũi|Γi = 0, which slightly differs from its usual
definition (the Dirichlet condition is here set only on part of ∂Ω∗i ).

• The volume PDE ũn+1
i = Vi(0, gn) has the following weak formulation:

Find ũn+1
i in H1

0 (Ω∗i ) such that, for every ũ′i ∈ H1
0 (Ω∗i ):∫

Ωi

∇ũn+1
i · ∇ũ′i dΩi −

∫
Ωi

k2ũn+1
i ũ′i dΩi +

∫
Γ∞i

Bũn+1
i ũ′i dΓ∞i

+
∑
j∈Di

∫
Σij

Sũn+1
i ũ′i dΣij =

∑
j∈Di

∫
Σij

gnij ũ
′
i dΣij .

(16)

• And the surface PDE gn+1
ji = Tji(g

n
ij , ũ

n+1
i ) has the following one:

Find gn+1
ji in H1(Σij) such that, for every g′ji ∈ H1(Σij):∫

Σij

gn+1
ji g′ji dΣij = −

∫
Σij

gnijg
′
ji dΣij + 2

∫
Σij

Sũn+1
i g′ji dΣij .

(17)

On the transmission boundaries. Depending on the choice of the transmission operator S,
the quantities

∫
Σij
Sũn+1

i ũ′i dΣij and
∫

Σij
Sũn+1

i g′ji dΣij expand as follows:

• IBC(χ): ∫
Σij

Sũn+1
i ũ′i dΣij :=

∫
Σij

(−ık + χ)ũn+1
i ũ′i dΣij ; (18)∫

Σij

Sũn+1
i g′ji dΣij :=

∫
Σij

(−ık + χ)ũn+1
i g′ji dΣij . (19)

• GIBC(a, b):∫
Σij

Sũn+1
i ũ′i dΣij :=

∫
Σij

aũn+1
i ũ′i dΣij −

∫
Σij

b∇ũn+1
i · ∇ũ′i dΣij ; (20)∫

Σij

Sũn+1
i g′ji dΣij :=

∫
Σij

aũn+1
i g′ji dΣij −

∫
Σij

b∇ũn+1
i · ∇g′ji dΣij . (21)
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• GIBC(Np, α, ε):∫
Σij

Sũn+1
i ũ′i dΣij := −ıkC0

∫
Σij

ũn+1
i ũ′i dΣij + ık

Np∑
`=1

A`

∫
Σij

1

k2
ε

∇Σijϕ` · ∇Σij ũ
′
i dΣij ,

(22)
where, for every ` = 1, . . . , Np, the function ϕ` is obtained through the resolution of

Find ϕ` in H1(Σij) such that, for every ϕ′` ∈ H1(Σij):

−
∫

Σij

ũn+1
i ϕ′` dΣij −B`

∫
Σij

1

k2
ε

∇Σijϕ` · ∇Σijϕ
′
` dΣij +

∫
Σij

ϕ` · ϕ′` dΣij = 0;

∫
Σij

Sũn+1
i g′ji dΣij := −ıkC0

∫
Σij

ũn+1
i g′ji dΣij − ık

Np∑
`=1

A`
B`

∫
Σij

(ũn+1
i − ϕ`)g′ji dΣij . (23)

• PML(σ):

∫
Σij

Sũn+1
i ũ′i dΣij :=

∫
ΩPML
ij

D∇ũn+1
i · ∇ũ′i dΩPML

ij −
∫

ΩPML
ij

k2E ũn+1
i ũ′i dΩPML

ij ; (24)∫
Σij

Sũn+1
i g′ji dΣij :=

∫
ΩPML
ij

D∇ũn+1
i · ∇g′ji dΩPML

ij −
∫

ΩPML
ij

k2E ũn+1
i g′ji dΩPML

ij , (25)

where D = diag( 1
γx
, γx, γx) and E = γx, with γx(xPML) = 1 + ı

ωσx(xPML), that is, we
consider a 1D PML with an absorption function that grows only in the direction normal to
the interface. In (25) the domain of definition of the test functions g′ji on Σij is extended
to the neighboring PML layer ΩPML

ij , effectively resulting at the discrete level in the inte-
gration of the functions associated with the nodes of the interface in the layer of volume
elements connected to the interface.

2.2 Electromagnetic Waves: Maxwell’s Equations

2.2.1 Mono-Domain Problem

The case of an electromagnetic wave is now considered for an obstacle Ω− with a smooth bound-
ary Γ and a three dimensional medium. When illuminated by an incident electric field Einc, a
perfectly conducting body Ω− generates a scattered field E, solution of the following exterior
electromagnetic scattering problem:

curl curl E− k2E = 0, in Ω+,
γT (E) = −γT (E), on Γ,

lim
‖x‖→∞

‖x‖
(

x

‖x‖
× curl E + ıkE

)
= 0,

(26)

where k := 2π/λ is again the wavenumber and λ the wavelength, n is the outward unit normal
to Ω+ (thus, inward to the obstacle) and γT is the tangential component trace operator

γT : v 7−→ n× (v × n).

The curl operator is defined by curl a := ∇ × a, for a complex-valued vector field a ∈ C3,
and the notation a× b designates the cross product between two complex-valued vectors a and
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b. The last equation of system (26), which is the so-called Silver-Müller radiation condition at
infinity, provides the uniqueness of the solution to the scattering boundary-value problem (26).

As for the acoustic case, numerically solving problem (26) with a volume discretization
method requires the truncation of the exterior propagation domain with a PML or with an ABC
on a fictitious boundary Γ∞ surrounding Ω−. For an ABC the problem to be solved is then
defined on the bounded domain Ω, with boundaries Γ and Γ∞:

curl curl E− k2E = 0, in Ω,

γT (E) = −γT (E), on Γ,

γt(curl E) + B(γT (E)) = 0, on Γ∞,

(27)

with γt the tangential trace operator:

γt : v 7−→ n× v.

As above, the unit normal n is outwardly directed to Ω and, to simplify, the solution of the
above problem is still designated by E. The operator B is an approximation of the Magnetic-to-
Electric (MtE) operator. The well-known Silver-Müller ABC at finite distance is obtained with
B = ık, similar to (3) for acoustics modulo the sign (due to the trace operator definitions). The
extension to more accurate ABCs or PMLs is standard.

2.2.2 Domain Decomposition and Transmission operators

Substructured formulation. The optimized Schwarz domain decomposition without overlap
is now considered for the Maxwell problem (27). The domain Ω is decomposed as described in
paragraph 2.1.2 and the same notations are used (recalling that D = {0, . . . , Ndom − 1} and,
for i ∈ D, Di = {j ∈ D s.t. j 6= i and Σij 6= ∅}). The iterative Jacobi algorithm for the
computation of the electric fields (En+1

i )i∈D at iteration n+ 1 involves, first, the solution of the
Ndom following problems

curl curl En+1
i − k2 En+1

i = 0, in Ωi,
γTi (En+1

i ) = −γTi (Einc), on Γi,

γti (curl En+1
i ) + B(γTi (En+1

i )) = 0, on Γ∞i ,

γti (curl En+1
i ) + S(γTi (En+1

i )) = gnij , on Σij , ∀j ∈ Di,

(28)

and then forming the quantities gn+1
ji through

gn+1
ji = γti (curl En+1

i ) + S(γTi (En+1
i )) = −gnij + 2S(γTi (En+1

i )), on Σij , (29)

where, for i ∈ D, Ei = E|Ωi , S is a transmission operator through the interfaces Σij and γti and
γTi are the local tangential trace and tangential component trace operators:

γti : vi 7−→ ni × vi|∂Ωi and γTi : vi 7−→ ni × (vi|∂Ωi × ni),

with ni the outward-pointing unit normal to Ωi.
Following the same procedure as in section 2.1.2, we introduce the two families of operators

(Vi)i∈D and (Tji)i∈D,j∈Di as:

1. En+1
i = Vi(Einc,gn) ⇐⇒ En+1

i is solution of problem (28), where gn = (gnji)i∈D,j∈Di col-
lects all the unknowns at iteration n;

2. gn+1
ji = Tji(g

n
ij ,E

n+1
i )⇐⇒ gn+1

ji is solution of problem (29).

10



By linearity, we decompose the field En+1
i as En+1

i = Fn+1
i + Ẽn+1

i , where

Fn+1
i = Vi(E

inc, 0) and Ẽn+1
i = Vi(0,g

n). (30)

The quantity Fn+1
i is independent of the iteration number n and can hence be written as

Fi := Fni , ∀n ∈ N, ∀i ∈ D. The whole algorithm can then be recast into a linear system:

(I − A)g = b, (31)

that can be solved by a Krylov subspace solver.
As in the acoustic case, for a vector gn, the quantity Agn is given by, for i ∈ D and j ∈ Di,

(Agn)ji = Tji

(
gnij , Ẽ

n+1
i

)
. The information about the incident wave is contained in the right-

hand side: bji = Tji (0,Fi). The domain decomposition algorithm for the Maxwell system
is then exactly the same as the one described in Algorithm 1 for the Helmholtz equation, by
formally replacing vi, uinc, g and ui by Fi,E

inc,g and Ei, respectively.

Transmission operator. Similarly to the acoustic case, optimal convergence of the domain
decomposition algorithm would be achieved by using the (non-local) MtE operator as trans-
mission condition. Local approximations based on polynomial or rational approximations of the
total symbol of the surface free-space MtE have been proposed, as well as volume representations
through Perfectly Matched Layers. Among those approximations, four are detailed below and
are implemented in GetDDM for a generic transmission boundary Σ:

• Zeroth-order transmission condition [17]:

SIBC(0)(γ
T (E)) = ıkγT (E). (32)

• Optimized second-order transmission condition [53]:

SGIBC(a,b)(γ
T (E)) = ık

(
I +

a

k2
∇ΣdivΣ

)−1
(
I − b

k2
curlΣcurlΣ

)
(γT (E)), (33)

where the curl operator is the dual operator of curl and where a and b are chosen so
that an optimal convergence rate is obtained for the (TE) and (TM) modes; see [53] for
the expression of a and b in the half-plane case. A zeroth-order optimized transmission
condition using a single second-order operator was proposed in [1].

• Padé-localized square-root transmission condition [23, 25]:

SGIBC(Np, α, ε)(γ
T (E)) = ık

C0 +

Np∑
`=1

A`X (I +B`X)−1

−1(
I − curlΣ

1

k2
ε

curlΣ
)

(γT (E)),

(34)
with X := ∇Σ

1
k2ε
divΣ − curlΣ 1

k2ε
curlΣ, and where kε, C0, A` and B` are defined by (13)

and (14). This transmission condition corresponds to a rational approximation of the MtE
symbol, generalizing the polynomial approximations underlying (32) and (33).

• PML transmission condition [59, 60]: The operator SPML(σ) is constructed by appending a
layer ΩPML to the transmission interface, into which a PML transformation with absorption
profile σ is applied in the same way as for the acoustic case.
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2.2.3 Weak Formulations

Generic weak formulations. Without loss of generality, only the case of a particular sub-
domain Ωi, for i ∈ D, with no incident wave (homogeneous Dirichlet boundary condition) is
detailed. We consider the same general setting as in the acoustic case, i.e., where PML lay-
ers ΩPML

i = ∪j∈DiΩPML
ij are potentially appended to the artificial interfaces Σij , and define

Ω∗i := Ωi ∪ ΩPML
i . The space of complex-valued curl-conforming vector fields on Ω∗i is denoted

by H(curl,Ω∗i ) := {W ∈ (L2(Ω∗i ))
3 such that curl(W) ∈ (L2(Ω∗i ))

3}. The functional space
H0(curl,Ω∗i ) is the space of functions Wi in H(curl,Ω∗i ) such that γTi (Wi) = 0 on Γi = 0 (the
boundary condition is only imposed on a part ∂Ω∗i ).

• The volume PDE Ẽn+1
i = Vi(0,gn) has the following weak formulation:

Find Ẽn+1
i ∈ H0(curl,Ωi) such that, for every Ẽ′i ∈ H0(curl,Ωi):∫

Ωi

curl Ẽn+1
i · curl Ẽ′i dΩi −

∫
Ωi

k2Ẽn+1
i · Ẽ′i dΩi −

∫
Γ∞i

B(γTi (Ẽn+1
i )) · Ẽ′i dΓ∞i

−
∑
j∈Di

∫
Σij

S(γTi (Ẽn+1
i )) · Ẽ′i dΣij = −

∑
j∈Di

∫
Σij

gnij · Ẽ′i dΣij .

(35)

• The surface PDE gn+1
ji = Tji(g

n
ij , Ẽ

n+1
i ) has the following one:

Find gn+1
ji in H(curl,Σij) such that, for every g′ji ∈ H(curl,Σij):∫

Σij

gn+1
ji · g′ji dΣij = −

∫
Σij

gnij · g′ji dΣij + 2

∫
Σij

S(γTi (Ẽn+1
i )) · g′ji dΣij .

On the transmission boundaries.

• IBC(0): ∫
Σij

S(γTi (Ẽn+1
i )) · Ẽ′i dΣij :=

∫
Σij

ık(γTi (Ẽn+1
i )) · Ẽ′i dΣij ; (36)∫

Σij

S(γTi (Ẽn+1
i )) · g′ji dΣij :=

∫
Σij

ık(γTi (Ẽn+1
i )) · g′ji dΣij . (37)

• GIBC(a, b): ∫
Σij

S(γTi (Ẽn+1
i )) · Ẽ′i dΣij :=

∫
Σij

ıkr · Ẽ′i dΣij , (38)

where the function r ∈ H(curl,Σij) is obtained through the solution of

Find r in H(curl,Σij) and ρ in H1(Σij) such that ∀r′ ∈ H(curl,Σij)
and ∀ρ′ ∈ H1(Σij):

−
∫

Σij

a

k2
∇Σijρ · r′ dΣij −

∫
Σij

r · r′ dΣij +

∫
Σij

γTi (Ẽn+1
i ) · r′ dΣij

−
∫

Σij

b

k2
curlΣij (γ

T
i (Ẽn+1

i )) · curlΣijr
′ dΣij = 0,∫

Σij

ρρ′ dΣij +

∫
Σij

r · ∇Σijρ
′ dΣij = 0;

(39)

∫
Σij

S(γTi (Ẽn+1
i )) · g′ji dΣij :=

∫
Σij

ıkr · g′ji dΣij . (40)
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• GIBC(Np, α, ε): ∫
Σij

S(γTi (Ẽn+1
i )) · Ẽ′i dΣij :=

∫
Σij

ıkr · Ẽ′i dΣij , (41)

where the function r ∈ H(curl,Σij) is obtained through the solution of

Find r in H(curl,Σij), and for ` = 1, . . . , Np, ϕ` in H(curl,Σij) and ρ` in H1(Σij)
such that ∀r′ ∈ H(curl,Σij), ∀ϕ′` ∈ H(curl,Σij) and ∀ρ′` ∈ H1(Σij):∫

Σij

C0r · r′ dΣij −
∫

Σij

γTi (Ẽn+1
i ) · r′ dΣij +

∫
Σij

1

k2
ε

curlΣij (γ
T
i (Ẽn+1

i )) · curlΣijr
′ dΣij

+

Np∑
`=1

A`

[∫
Σij

∇Σijρ` · r′ dΣij −
∫

Σij

1

k2
ε

curlΣijϕ` · curlΣijr
′ dΣij

]
= 0,∫

Σij

ϕ` ·ϕ′` dΣij +B`

[∫
Σij

∇Σijρ` ·ϕ′` dΣij −
∫

Σij

1

k2
ε

curlΣijϕ` · curlΣijϕ
′
` dΣij

]
−
∫

Σij

r ·ϕ′` dΣij = 0, ` = 1, . . . , Np,∫
Σij

ρ`ρ
′
` dΣij +

∫
Σij

1

k2
ε

ϕ` · ∇Σijρ
′
` dΣij = 0, ` = 1, . . . , Np;

(42)∫
Σij

S(γTi (Ẽn+1
i )) · g′ji dΣij :=

∫
Σij

ıkr · g′ji dΣij . (43)

• PML(σ): ∫
Σij

S(γTi (Ẽn+1
i )) · Ẽ′i dΣij :=

∫
ΩPML
ij

D−1 curl Ẽn+1
i · curl Ẽ′i dΩPML

ij

−
∫

ΩPML
ij

D k2Ẽn+1
i · Ẽ′i dΩPML

ij ;

(44)

∫
Σij

S(γTi (Ẽn+1
i )) · g′ji dΣij :=

∫
ΩPML
ij

D−1 curl Ẽn+1
i · curl g′ji dΩPML

ij

−
∫

ΩPML
ij

D k2Ẽn+1
i · g′ji dΩPML

ij ,

(45)

where the tensor D is defined as for the acoustic case and the test functions g′ji are again
extended to the volume of the PML layers.

3 Implementation in GetDDM

GetDDM is based on the open source finite element solver GetDP (http://getdp.info) and the
open source mesh generator Gmsh (http://gmsh.info). The complete implementation of all
the techniques reviewed in this paper is freely available online on the web site of the ONELAB
project [36, 37], at the following address: http://onelab.info/wiki/GetDDM. Various 2D and
3D test-cases are provided online (see also Section 4) for both Helmholtz and Maxwell’s equa-
tions, as well as detailed instructions on how to build the software for parallel computer archi-
tectures. Pre-compiled, serial versions of the software for Windows, MacOS and Linux are also
available for development and testing.
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By default, GetDDM uses Gmsh [39, 40] for geometry description, mesh generation and data
visualization. While any other CAD system and mesh generator can also be used, Gmsh pro-
vides a tight integration with GetDP through the ONELAB interface, which permits a seamless
modification of the various model and solver parameters. In what follows, as we focus on the
behavior of the domain decomposition methods with various optimized transmission conditions,
we will consider relatively simple geometrical configurations, where the subdomain partitioning
is carried out at the level of the CAD. Also, no special treatment of cross-points is considered.
More complex configurations can however be treated—see Section 4.

Once a suitable finite element mesh is generated, GetDDM uses GetDP to assemble and
solve the finite element problem in parallel. GetDP (a “General environment for the Treatment
of Discrete Problems”) [21, 22, 35] uses mixed elements to discretize de Rham-type complexes in
one, two and three dimensions. Its main feature is the closeness between the input data defining
discrete problems and the symbolic mathematical expressions of these problems, translated into
ten inter-dependent objects. As mentioned in the introduction, while GetDP is written in
C++, the problem definition is directly written in input ASCII text files (.pro files), using
GetDP’s own problem definition language. This allows for example to write weak forms of
(28) together with either (32), (33) or (34) directly in the input data files, and use the natural
mixed finite element spaces suitable for discretization [34, 23]. In practice, a problem definition
written in .pro input files is usually split between the objects defining data particular to a
given problem, such as geometry, physical characteristics and boundary conditions (i.e., the
Group, Function and Constraint objects), and those defining a resolution method, such as
unknowns, equations and related objects (i.e., the Jacobian, Integration, FunctionSpace,
Formulation, Resolution and PostProcessing objects). The processing cycle ends with the
presentation of the results, using the PostOperation object. This decomposition points out
the possibility of building black boxes adapted to the treatment of general classes of problems
that share the same resolution methods—typically what is done in GetDDM, where, as will
be explained below, the Schwarz.pro and Decomposition.pro files contain the generic domain
decomposition algorithms, and the Helmholtz.pro and Maxwell.pro contain the physics-specific
function spaces and weak formulations, used in all the other particular problem definition files
(e.g. waveguide3d.pro or marmousi.pro). Of particular significance is that the input .pro files
are not interpreted at run-time: they are analyzed once before the computation is run; then the
computation (finite element assembly, system solution, etc.) is carried out fully automatically
in compiled code, the parallel linear algebra being handled by the open-source PETSc solvers [3,
4, 5].

The remainder of this section covers in detail the implementation in the GetDP language
(in .pro files) of the domain decomposition algorithms presented in Section 2, from the weak
formulations to the parallel iterative solution of the resulting linear systems. The focus is on
advanced techniques required to implement the domain decomposition algorithms efficiently; for
an introduction to GetDP and its various more elementary features, the reader is referred to
the GetDP reference manual [20] and is encouraged to explore the numerous examples available
on the website of the ONELAB project (http://onelab.info). In a similar way, the elemen-
tary geometry and meshing features of Gmsh are not described here: the reader is referred to
the Gmsh reference manual [38] and the various .geo files provided on the ONELAB site for
additional information.

3.1 Weak Formulations and Finite Element Discretization

Before describing the weak formulations, we briefly introduce the discrete functional spaces based
on the appropriate finite element functions available in GetDDM. For the Helmholtz problem
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1 FunctionSpace {
2 { Name Hgrad_u ~{idom}; Type Form0;
3 BasisFunction {
4 { Name sn; NameOfCoef un; Function BF_Node;
5 Support Region[ {Omega ~{idom}, Pml~{idom}, Sigma~{idom},
6 GammaInf ~{idom}} ];
7 Entity NodesOf[ All ];
8 }
9 }

10 Constraint {
11 { NameOfCoef un; EntityType NodesOf;
12 NameOfConstraint Dirichlet_u ~{idom}; }
13 { NameOfCoef un; EntityType NodesOf;
14 NameOfConstraint Dirichlet_u0 ~{idom}; }
15 }
16 }
17 }

Listing 1: Approximation space of H1(Ω∗i ) with Dirichlet boundary conditions, using standard
P1 basis functions (associated with the nodes of the finite element mesh). (Code extracted from
the file Helmholtz.pro.)

1 { Name sn2; NameOfCoef un2; Function BF_Node_2E;
2 Support Region[ {Omega ~{idom}, Pml~{idom}, Sigma~{idom},
3 GammaInf ~{idom}} ];
4 Entity EdgesOf[ All ];
5 }

Listing 2: Additional edge-based basis functions for a second-order, hierarchical approximation
space of H1(Ω∗i ).

with a Dirichlet boundary condition, we naturally consider the classical linear finite element (P1)
space, using the built-in BF_Node basis functions (the Form0 type refers to functions in H1). The
boundary conditions are imposed strongly as constraints on the coefficients in the expansion of
the approximate solution in terms of the finite element basis: see Listing 1. Going to second-
order using hierarchical polynomials would simply consist in adding another BasisFunction in
the FunctionSpace; in addition to the nodal degrees of freedom, the finite element expansion
now also uses degrees of freedom associated with the edges of the mesh: see Listing 2. Discrete
function spaces for surface unknowns are written similarly, the only difference being the Support.
For example, the approximation space for the auxiliary functions ϕ` in H1(Σij) in (22) is simply
constructed by specifying Support Sigma~{idom} in the FunctionSpace.

Even if the Maxwell problem is more complicated, its implementation in GetDDM is also
quite straightforward. Indeed, the natural approximation space for the vector unknowns is the
Whitney edge element space [11], which is directly available through the BF_Edge basis functions
(with type Form1, referring to functions in H(curl)), for both the volume and surface unknowns
(see Listing 3). More details about the functional framework for the Maxwell problem can be
found in [25]. Let us also remark that, for the sake of conciseness, we choose to present the
standard weak formulations for the Helmholtz and Maxwell’s equations. Other formulations
(dual, mixed), associated finite element spaces (Raviart-Thomas, discontinuous, ...) and other
equations (elastodynamics, Schrödinger, ...) could be developed as well in the same GetDDM
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1 FunctionSpace {
2 { Name Hcurl_e ~{idom}; Type Form1;
3 BasisFunction {
4 { Name se; NameOfCoef ee; Function BF_Edge;
5 Support Region[ {Omega ~{idom}, Pml~{idom}, Sigma~{idom},
6 GammaInf ~{idom}} ];
7 Entity EdgesOf[ All ]; }
8 }
9 Constraint {

10 { NameOfCoef ee; EntityType EdgesOf;
11 NameOfConstraint Dirichlet_e0 ~{idom}; }
12 }
13 }
14 }

Listing 3: Approximation space of H(curl,Ω∗i ). (Code extracted from the file Maxwell.pro.)

framework.
Following Algorithm 1, for every subdomain, the weak formulation solved at each iteration

remains the same, up to the right-hand side. The input file contains only one weak formulation,
indexed by the subdomain number idom and encapsulated in a For loop. All the considered
transmission conditions are also regrouped in the same file and selected according to the TC_TYPE
parser variable4. The weak formulation for the volume system (16) is presented in Listing 4
without the transmission boundary condition terms (18)–(24), which are detailed in Listings 5–8
respectively. In the Formulation object [.,.] inside a Galerkin term denotes an inner product
for building linear or bilinear forms, with test functions by convention to the right of the comma.
Unknown quantities (in bilinear forms) are marked with the Dof{} operator; d represents the
exterior derivative. The $PhysicalSource run-time variable (resp. $ArtificalSource) specifies
whether the physical (resp. transmission) boundary condition is set or not. The iSide parser
variable is used to indicate the “left” or the “right” transmission boundaries of a given subdomain
(see Section 3.2.1), which is necessary for sweeping-type preconditioners (see Section 3.3) [59].
In the absence of preconditioning, the “left”/“right” distinction is not mandatory, and all the
quantities and domains can be regrouped in either one. In the same way as for the volume part,
the surface equation (17) is also directly transcribed as a Formulation in the input file: the
relevant Equation is presented in Listing 9. Note that, for the GIBC(Np, α, ε) condition (22),
the auxiliary quantities ϕ` have already been computed during the volume resolution (Listing 7)
and are here re-used (without Dof{}). The quantities g_in refer to the (incoming) functions gji
(16) (see Section 3.2.2). Finally, for conciseness, the part of the implementation which is standard
in GetDP is not detailed here, that is for example the definition of functions (Function objects)
and the construction of integration rules (Jacobian and Integration objects). As an example,
for a circular absorbing boundary condition of radius R_EXT, the two functions alphaBT[] and
betaBT[] in Listing 4 are defined as:

alphaBT[] = 1/(2*R_EXT) - I[]/(8*k*R_EXTˆ2*(1+I[]/(k*R_EXT)));
betaBT[] = - 1/(2*I[]*k*(1+I[]/(k*R_EXT)));

where the function I[] is defined as I[] = Complex[0, 1].
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1 Formulation {
2 { Name Vol~{idom}; Type FemEquation;
3 Quantity {
4 { Name u~{idom}; Type Local; NameOfSpace Hgrad_u ~{idom}; }
5 }
6 Equation {
7 Galerkin { [ Dof{d u~{idom}}, {d u~{idom}} ];
8 In Omega ~{idom}; Jacobian JVol; Integration I1; }
9 Galerkin { [ - k[]^2 * Dof{u~{idom}}, {u~{idom}} ];

10 In Omega ~{idom}; Jacobian JVol; Integration I1; }
11

12 // artificial sources on transmission boundaries (iSide split only
13 // useful for sweeping -type preconditioners)
14 For iSide In {0:1}
15 Galerkin { [ - ($ArtificialSource ~{iSide} ? g_in~{idom }~{ iSide }[] : 0),
16 {u~{idom}} ];
17 In Sigma ~{idom }~{ iSide }; Jacobian JSur; Integration I1; }
18 EndFor
19

20 // Bayliss -Turkel absorbing boundary condition
21 Galerkin { [ - I[] * k[] * Dof{u~{idom}} , {u~{idom}} ];
22 In GammaInf ~{idom}; Jacobian JSur; Integration I1; }
23 Galerkin { [ alphaBT [] * Dof{u~{idom}} , {u~{idom}} ];
24 In GammaInf ~{idom}; Jacobian JSur; Integration I1; }
25 Galerkin { [ betaBT [] * Dof{d u~{idom}} , {d u~{idom}} ];
26 In GammaInf ~{idom}; Jacobian JSur; Integration I1; }
27

28 // transmission condition (see next 4 Listings)
29 〈· · · 〉
30 }
31 }
32 }

Listing 4: Volume system of the Helmholtz equation (16). (Code extracted from the file
Helmholtz.pro. For conciseness the declaration of the auxiliary functions phi in Quantity
is omitted.)

1 If(TC_TYPE == 0) // IBC
2 Galerkin { [ - I[] * kIBC[] * Dof{u~{idom}} , {u~{idom}} ];
3 In Sigma ~{idom}; Jacobian JSur; Integration I1; }
4 EndIf

Listing 5: Impedance boundary condition IBC(χ) transmission condition (18). (Code extracted
from the file Helmholtz.pro.)

1 If(TC_TYPE == 1) // GIBC(a, b)
2 Galerkin { [ a[] * Dof{u~{idom}} , {u~{idom}} ];
3 In Sigma ~{idom}; Jacobian JSur; Integration I1; }
4 Galerkin { [ - b[] * Dof{d u~{idom}} , {d u~{idom}} ];
5 In Sigma ~{idom}; Jacobian JSur; Integration I1; }
6 EndIf

Listing 6: GIBC(a, b) transmission condition (20). (Code extracted from the file
Helmholtz.pro.)
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1 If(TC_TYPE == 2) // GIBC(NP_OSRC , theta_branch , eps)
2 Galerkin { [ - I[] * k[] * OSRC_C0 []{ NP_OSRC ,theta_branch} * Dof{u~{idom}} ,
3 {u~{idom}} ];
4 In Sigma~{idom}; Jacobian JSur; Integration I1; }
5 For iSide In {0:1}
6 For j In{1: NP_OSRC}
7 Galerkin { [ I[] * k[] * OSRC_Aj []{j,NP_OSRC ,theta_branch} / keps []^2 *
8 Dof{d phi~{j}~{ idom }~{ iSide }} , {d u~{idom}} ];
9 In Sigma ~{idom }~{ iSide }; Jacobian JSur; Integration I1; }

10

11 Galerkin { [ - Dof{u~{idom}} , {phi~{j}~{ idom }~{ iSide}} ];
12 In Sigma ~{idom }~{ iSide }; Jacobian JSur; Integration I1; }
13 Galerkin { [ - OSRC_Bj []{j,NP_OSRC ,theta_branch} / keps []^2 *
14 Dof{d phi~{j}~{ idom }~{ iSide }} , {d phi~{j}~{ idom }~{ iSide}} ];
15 In Sigma ~{idom }~{ iSide }; Jacobian JSur; Integration I1; }
16 Galerkin { [ Dof{phi~{j}~{ idom }~{ iSide}} , {phi~{j}~{ idom }~{ iSide}} ];
17 In Sigma ~{idom }~{ iSide }; Jacobian JSur; Integration I1; }
18 EndFor
19 EndFor
20 EndIf

Listing 7: GIBC(Np, α, ε) transmission condition (22). (Code extracted from the file
Helmholtz.pro.)

1 If (TC_TYPE == 3) // PML
2 For iSide In {0:1}
3 Galerkin { [D[] * Dof{d u~{idom}}, {d u~{idom }}];
4 In Pml~{idom }~{ iSide}; Jacobian JVol; Integration I1;}
5 Galerkin { [ - kPml~{idom }~{ iSide }[]^2 * E[] * Dof{u~{idom}}, {u~{idom }}];
6 In Pml~{idom }~{ iSide}; Jacobian JVol; Integration I1;}
7 EndFor
8 EndIf

Listing 8: Perfectly Matched Layer transmission condition (24). (Code extracted from the file
Helmholtz.pro.)
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1 Galerkin { [ Dof{g_out~{idom }~{ iSide }} , {g_out ~{idom }~{ iSide}} ];
2 In Sigma~{idom }~{ iSide }; Jacobian JSur; Integration I1; }
3 Galerkin { [ $ArtificialSource ~{iSide} ? g_in~{idom }~{ iSide }[] : 0 ,
4 {g_out~{idom }~{ iSide}} ];
5 In Sigma~{idom }~{ iSide }; Jacobian JSur; Integration I1; }
6

7 If(TC_TYPE == 0) // IBC
8 Galerkin { [ 2 * I[] * kIBC[] * {u~{idom}} , {g_out~{idom }~{ iSide}} ];
9 In Sigma~{idom }~{ iSide }; Jacobian JSur; Integration I1; }

10 EndIf
11

12 If(TC_TYPE == 1) // GIBC(a, b)
13 Galerkin { [ - 2 * a[] * {u~{idom}} , {g_out~{idom }~{ iSide }} ];
14 In Sigma~{idom }~{ iSide }; Jacobian JSur; Integration I1; }
15 Galerkin { [ 2 * b[] * {d u~{idom}} , {d g_out~{idom }~{ iSide }} ];
16 In Sigma~{idom }~{ iSide }; Jacobian JSur; Integration I1; }
17 EndIf
18

19 If(TC_TYPE == 2) // GIBC(NP_OSRC , theta_branch , eps)
20 Galerkin { [ 2 * ( I[] * k[] * OSRC_C0 []{ NP_OSRC ,theta_branch} *
21 {u~{idom}} ) , {g_out~{idom }~{ iSide}} ];
22 In Sigma~{idom }~{ iSide }; Jacobian JSur; Integration I1; }
23 For j In {1: NP_OSRC}
24 Galerkin { [ 2 * ( I[] * k[] * OSRC_Aj []{j,NP_OSRC ,theta_branch} /
25 OSRC_Bj []{j,NP_OSRC ,theta_branch} *
26 ({u~{idom}} - {phi~{j}~{ idom }~{ iSide }})) , {g_out~{idom }~{ iSide }} ];
27 In Sigma ~{idom }~{ iSide }; Jacobian JSur; Integration I1; }
28 EndFor
29 EndIf
30

31 If (TC_TYPE == 3) // PML
32 Galerkin { [ -2 * D[] * {d u~{idom}}, {d g_out~{idom }~{ iSide }}];
33 In Pml~{idom }~{ iSide }; Jacobian JVol; Integration I1;}
34 Galerkin { [ 2 * kPml~{idom }~{ iSide }[]^2 *E[] * {u~{idom}},
35 {g_out~{idom }~{ iSide }}];
36 In Pml~{idom }~{ iSide }; Jacobian JVol; Integration I1;}
37 EndIf

Listing 9: Equation part of the surface formulation (17) for the Helmholtz problem. (Code
extracted from the file Helmholtz.pro.)
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1 Formulation {
2 { Name Vol~{idom}; Type FemEquation;
3 Quantity {
4 { Name e~{idom}; Type Local; NameOfSpace Hcurl_e ~{idom}; }
5 }
6 Equation {
7 // volume terms
8 Galerkin { [ Dof{d e~{idom}}, {d e~{idom}} ];
9 In Omega ~{idom}; Integration I1; Jacobian JVol; }

10 Galerkin { [ -k[]^2 * Dof{e~{idom}} , {e~{idom}} ];
11 In Omega ~{idom}; Integration I1; Jacobian JVol; }
12 Galerkin { [ -I[] * k[] * N[] /\ (Dof{e~{idom}} /\ N[]) , {e~{idom}} ];
13 In GammaInf ~{idom}; Integration I1; Jacobian JSur; }
14

15 // artificial sources on transmission boundaries (iSide split only
16 // useful for sweeping -type preconditioners)
17 For iSide In {0:1}
18 Galerkin { [ $ArtificialSource ~{iSide} ? g_in~{idom }~{ iSide }[] :
19 Vector [0,0,0] , {e~{idom}} ];
20 In Sigma ~{idom }~{ iSide }; Integration I1; Jacobian JSur; }
21 EndFor
22

23 // transmission condition
24 〈· · · 〉
25 }
26 }
27 }

Listing 10: Volume system of the Maxwell equation (35). (Code extracted from the file
Maxwell.pro.)

The implementation of the weak formulations for the Maxwell problem is similar. For exam-
ple, the volume PDE formulation is presented in Listing 10. For the detailed implementation of
the transmission conditions, see the Maxwell.pro source file.

3.2 Domain Decomposition Solver

The domain decomposition method is naturally suited for parallel computation on distributed
memory architectures, using e.g. the Message Passing Interface (MPI). A classical and effi-
cient approach is to use, when possible, as many MPI processes as subdomains. The ith pro-
cess is then associated for example to Ωi and is then in charge of solving the volume PDE
on Ωi and computing every outgoing data (gji)j∈Di . (Each MPI process can of course be
multi-threaded in order to benefit from shared memory parallelism—this is handled automat-
ically in GetDDM through the use of appropriate BLAS libraries.) On the other hand, solv-
ing these problems requires the knowledge of the incoming quantities (gij)j∈Di and, as the
memory is distributed, an exchange of information with each process of rank j ∈ Di must be
achieved, leading to Algorithm 2. The inter-process communications are handled transparently
by GetDDM in the IterativeLinearSolver function (see Section 3.2.3) and via the explicit
SetCommSelf/SetCommWorld commands. By default, GetDDM uses a broadcast to exchange in-
formation between the processes; this can be replaced by a more efficient communication pattern
by explicitly specifying the subdomain connections, as explained in Section 3.2.2. To summarize,

4Parser variables are evaluated when the input .pro file is analyzed. They cannot be changed during the
actual computation, contrary to run-time variables (prefixed with a $).
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solving the domain decomposition problem with GetDDM involves these main steps:

1. Create a mesh for each subdomain.

2. Write the weak formulations.

3. Distribute the subdomains and the unknowns to the MPI processes.

4. Optional: specify the topology to improve communications.

5. Setup the iterative solver.

Points 1 and 2 have been described in the previous section and are unchanged compared to
standard (non-parallel) programs, for which many examples can be found online on http://
onelab.info. Only the new points 3, 4 and 5 are hence detailed in the following paragraphs.
Each point will first be described, then illustrated by an example and a code listing, based on a
simple waveguide-like structure divided into slices.

Algorithm 2 Domain decomposition algorithm from the point of view of the local ith MPI
process (Helmholtz case).

1. Solve the local volume problem: vi = Vi(uinc, 0).

2. Compute the local contribution to the right hand side: bji = Tji(0, vi).

3. Exchange information about the (geometric) topology between processes.

4. Enter the parallel iterative Krylov subspace solver for the system (I − A)g = b; at each
iteration, compute the local contribution (Agn)ji through the following sequence of oper-
ations:

• Send quantity gnji to and receive gnij from connected processes j ∈ Di.

• Solve the local volume problem: ũn+1
i = Vi(0, gn).

• Solve the local surface problems: (Agn)ji = Tji(g
n
ij , ũ

n+1
i ), ∀j ∈ Di.

5. Send quantity gji to and receive gij from connected processes j ∈ Di.

6. Compute the local contribution to the final solution by solving the volume problem: ui =
Vi(uinc, g).

3.2.1 Distributing the Subdomains and the Unknowns

In GetDDM the unknown gji is called a Field, which is a function that can be interpolated
using a finite element basis on its domain of definition (and which is set to zero elsewhere).
Distributing the subdomains to the different MPI processes is straightforward. Special consid-
eration is however needed for the Fields, as they must be indexed using a global numbering
scheme. This numbering is chosen by the user: it amounts to choosing a unique integer identi-
fier for every pair (j, i). Once the numbering is decided upon, two local (per MPI process) lists
must be constructed containing respectively the indices of the subdomain(s) and the (global)
indices of the Fields that the current process is in charge of. In this paper, these two lists are
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named respectively ListOfSubdomains and ListOfFields. A generic implementation for simple
layered-like decompositions is provided in the Decomposition.pro file.

Let this point be clarified by a simple example on a one-directional waveguide, divided into
Ndom subdomains, from “left” (0) to “right” (Ndom− 1) as depicted in the table below (each cell
being a subdomain):

0 1 2 . . . Ndom − 1

To simplify, the number of MPI processes is set to Ndom and the domain Ωi is handled by the
MPI process of rank i, which is done in practice by an If statement on the MPI rank. Now,
about the unknown gji: a subdomain has two connected subdomains except the first and the
last one (Ω0 and ΩNdom−1), which have only one adjacent subdomain. Every process will hence
be in charge of either 2 Fields (the “interior” subdomains) or 1 Field (the first and last one).
A simple choice for the global numbering of these Fields is to go from 0 to 2Ndom − 3 with a
step of 1, as follows:

Subdomain number 0 1 2 . . . Ndom − 1

Indices (j, i) (of gji) (1, 0) (0, 1) (2, 1) (1, 2) (2, 3) . . . (Ndom − 2, Ndom − 1)

Global index of (j, i) 0 1 2 3 4 . . . 2Ndom − 3

The contents of the local lists ListOfSubdomains and ListOfFields are then (the brackets [·]
recall the list nature of the quantities):

MPI Process ListOfSubdomains ListOfFields
0 [0] [0]

1 [1] [1, 2]

2 [2] [3, 4]
...

...
...

Ndom − 1 [Ndom − 1] [2Ndom − 3]

A generalized input .pro file for this example is presented in Listing 11 (taken from the file
Decomposition.pro). Let us point out the following remarks about the above implementation:

• The operation List += a appends a at the end of the list List; #List returns the size of
the list List.

• The sizes of ListOfSubdomains and ListOfFields can differ from one MPI process to
another.

• Listing 11 is not restricted to Ndom MPI processes. Indeed and for example, for 4 subdo-
mains and 3 MPI processes, the processes 1 and 2 will be in charge of subdomains 1 and
2, but the process of rank 0 will be in charge of subdomains 0 and 3. In that case and for
process 0, ListOfSubdomains = [0, 3] and ListOfFields = [0, 5]. Sequential execution (1
MPI process) is therefore also automatically handled.

• Generally and as in the example above, a Field represents one and only one unknown
gji. However, there is no restriction and a Field can actually represent two or more
unknowns. This can lead to a simpler algorithmic implementation, but can degrade parallel
performance as it increases the amount of communication (e.g. ith process would send the
field gki to process j instead of only gji, for j, k ∈ Di, j 6= k).
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1 ListOfSubdomains = {}; // the subdomains that I’m in charge of
2 ListOfFields = {}; // my fields
3 For idom In {0:N_DOM -1}
4 If (idom % MPI_Size == MPI_Rank)
5 If(idom == 0)
6 myFieldLeft = {};
7 myFieldRight = {0};
8 EndIf
9 If(idom == N_DOM -1)

10 myFieldLeft = {2*idom -1};
11 myFieldRight = {};
12 EndIf
13 If(idom > 0 && idom < N_DOM -1)
14 myFieldLeft = {2*idom -1};
15 myFieldRight = {2* idom};
16 EndIf
17 ListOfSubdomains += idom;
18 ListOfFields += {myFieldLeft (), myFieldRight ()};
19 EndIf
20 EndFor

Listing 11: Distribution of the subdomains and the Fields to the different MPI processes; the
number of MPI processes can be different from the number of subdomains. (Code extracted
from the file Decomposition.pro.)

3.2.2 Enhancing the Communication Process

By default the communication of the Fields between the MPI processes is global and realized
through an MPI_Broadcast. This is clearly inefficient for large scale problems and can be
remedied by explicitly specifying the connections between the Fields, in which case efficient
asynchronous MPI_Isend and MPI_Irecv communication is used. Two Fields are said to be
“connected” when one is needed to compute the other. For example, the Fields storing gij
and gji are connected (through equation (5)). For the simple one-directional waveguide, the
following table provides the connectivity of the Fields:

Subdomain number 0 1 2 . . . Ndom − 1

Index of Field storing gji 0 1 2 3 4 . . . 2Ndom − 3

Index of connected Field storing gij 1 0 3 2 5 . . . 2Ndom − 4

In practice, the indices of these connected Fields are contained in a third list, named here
ListOfConnectedFields. As suggested above, a Field can however store more than one un-
known gji. In the waveguide example, the two unknowns g0,1 and g2,1 could be stored in a single
Field numbered 1, without changing the other Fields’ indices. In that case, Field 1 would be
connected to the two Fields 0 and 3. ListOfConnectedFields is actually a concatenation of
sublists, each one being preceded by its size.

This point is clarified by the following example, which completes the one from Section 3.2.1.
The two lists ListOfSubdomains and ListOfFields remain unchanged and a new list, named
ListOfConnectedFields, is added, composed of the number of connected Fields (written in
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bold) followed by their indices. Every Field has hence only one connected Field.

MPI Process ListOfSubdomains ListOfFields Connected ListOfConnectedFields
0 [0] [0] [[1]] [1, 1]

1 [1] [1, 2] [[0], [3]] [1, 0,1, 3]

2 [2] [3, 4] [[2], [5]] [1, 2,1, 5]
...

...
...

...
...

Ndom − 1 [Ndom − 1] [2Ndom − 3] [[2Ndom − 4]] [1, 2Ndom − 4]

A general implementation for layered decomposition is provided in Listing 12, taken from the
file Decomposition.pro. This code is again written for an arbitrary number of MPI processes.
Note that, to be used in the weak formulations, a Field must be called through the command
ComplexScalarField or ComplexVectorField, depending on its nature. In Listing 12 and to
simplify, the connected Fields are stored in the quantities g_in (see also Listing 4).

3.2.3 Handling the Iterative Solver

The iterative algorithm uses the built-in GetDDM function IterativeLinearSolver, which
takes as argument the operations that implement the matrix-vector product. (Internally,
IterativeLinearSolver is based on PETSc, which allows to transparently interface a large
collection of parallel iterative solvers. In Listing 13, the solver is specified by the string variable
SOLVER (line 29), which can select any of the PETSc KSP_TYPE Krylov method (e.g. "gmres"
for GMRES or "bcgs" for bi-CGStab5), followed by standard parameters such as the tolerance
and the maximum number of iterations.

Listing 13 presents the Resolution object from the generic Schwarz.pro example file,
using the lists described above. The implementation uses a series of Macros (called
with Call), defined in the SchwarzMacros.pro file. The macros EnablePhysicalSources
and DisablePhysicalSources modify the run-time variable $PhysicalSource introduced in
Section 3.1 (and update the values of the physical constraints accordingly); the macros
EnableArtificialSources and DisableArtificialSources modify the run-time variable
$ArtificialSource. The three other macros (SolveVolumePDE and SolveSurfacePDE and
UpdateSurfaceFields) solve the volume and the surface problems and update the Fields,
respectively. They are presented in Listings 14, 15 and 16.

3.3 Other Features

As seen above, GetDDM provides quite a general environment for the solution of Schwarz-type
domain decomposition problems: the flexibility in the specification of discrete function spaces
and weak formulations allows to handle a variety of physical problems and geometrical configu-
rations; and the generic linear algebra (through IterativeLinearSolver) and communication
mechanism (using Fields) permits to implement different variants of Schwarz methods. In
addition to the basic functionality described above, the following features are also available:

5See http://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/KSP/KSPType.html for a complete
list.

24

http://onelab.info/files/ddm_waves/Decomposition.pro
http://onelab.info/files/ddm_waves/Schwarz.pro
http://onelab.info/files/ddm_waves/SchwarzMacros.pro
http://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/KSP/KSPType.html


1 ListOfConnectedFields = {}; // fields connected to my fields
2 For idom In {0:N_DOM -1}
3 If (idom % MPI_Size == MPI_Rank)
4 If(idom == 0)
5 // fields to exchange with
6 connectedFieldLeft = {};
7 connectedFieldRight = {1};
8 // as many "blocks" as connected fields
9 ListOfConnectedFields += #connectedFieldRight ();

10 ListOfConnectedFields += connectedFieldRight ();
11 EndIf
12 If(idom == N_DOM -1)
13 connectedFieldLeft = {2*(idom -1)};
14 connectedFieldRight = {};
15 ListOfConnectedFields += #connectedFieldLeft ();
16 ListOfConnectedFields += connectedFieldLeft ();
17 EndIf
18 If(idom > 0 && idom < N_DOM -1)
19 connectedFieldLeft = {2*(idom -1)};
20 connectedFieldRight = {2* idom +1};
21 // 2 "blocks"
22 ListOfConnectedFields += #connectedFieldLeft ();
23 ListOfConnectedFields += connectedFieldLeft ();
24 ListOfConnectedFields += #connectedFieldRight ();
25 ListOfConnectedFields += connectedFieldRight ();
26 EndIf
27 // definition of artificial source fields
28 If(ANALYSIS == 0) // Helmholtz (scalar -valued)
29 g_in~{idom }~{0}[ Sigma~{idom }~{0}] = ComplexScalarField[XYZ []]{

connectedFieldLeft ()};
30 g_in~{idom }~{1}[ Sigma~{idom }~{1}] = ComplexScalarField[XYZ []]{

connectedFieldRight ()};
31 EndIf
32 If(ANALYSIS == 1) // Maxwell (vector -valued)
33 g_in~{idom }~{0}[ Sigma~{idom }~{0}] = ComplexVectorField[XYZ []]{

connectedFieldLeft ()};
34 g_in~{idom }~{1}[ Sigma~{idom }~{1}] = ComplexVectorField[XYZ []]{

connectedFieldRight ()};
35 EndIf
36 EndIf
37 EndFor

Listing 12: Creation of the list ListOfConnectedFields for a layered decomposition. (Code
extracted from the file Decomposition.pro.)
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1 Resolution {
2 { Name DDM;
3 System {
4 For i In {0:# ListOfSubdomains () -1}
5 idom = ListOfSubdomains(i);
6 { Name Vol~{idom}; NameOfFormulation Vol~{idom};
7 Type Complex; NameOfMesh Sprintf[StrCat[FILE , "%g.msh"], idom]; }
8 For iSide In {0:1}
9 { Name Sur~{idom }~{ iSide}; NameOfFormulation Sur~{idom }~{ iSide};

10 Type Complex; NameOfMesh Sprintf[StrCat[FILE , "%g.msh"], idom]; }
11 EndFor
12 EndFor
13 }
14 Operation {
15 // compute local part of distributed rhs b for Krylov solver using
16 // physical sources only , and update surface data
17 Call EnablePhysicalSources;
18 Call DisableArtificialSources;
19 Call SolveVolumePDE;
20 Call SolveSurfacePDE;
21 Call UpdateSurfaceFields;
22

23 // launch distributed Krylov solver using artificial sources only.
24 // IterativeLinearSolver solves (I-A) g = b: ListOfFields () initially
25 // stores the local part of b; then stores each local part of iterate
26 // g^n.
27 Call DisablePhysicalSources;
28 Call EnableArtificialSources;
29 IterativeLinearSolver["I-A", SOLVER , TOL , MAXIT , RESTART ,
30 {ListOfFields ()}, {ListOfConnectedFields ()}, {}]
31 {
32 // compute local part of (A g^n) and stores the result in
33 // ListOfFields ()
34 Call SolveVolumePDE;
35 Call SolveSurfacePDE;
36 Call UpdateSurfaceFields;
37 }
38

39 // build final volume solution after convergence on own cpu , using both
40 // physical and artificial sources
41 Call EnablePhysicalSources;
42 Call EnableArtificialSources;
43 Call SolveVolumePDE;
44 Call SaveVolumeSolutions;
45 }
46 }
47 }

Listing 13: Resolution of the domain decomposition method using GetDDM. Macros are used
to simplify the code. (Code extracted from the file Schwarz.pro.)
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1 Macro SolveVolumePDE
2 // work on own cpu
3 SetCommSelf;
4 For ii In {0:# ListOfSubdomains () -1}
5 idom = ListOfSubdomains(ii);
6 // solve the volume PDE on each subdomain
7 If(GenerateVolFlag ~{idom})
8 // the matrix is already factorized , only regenerate the RHS
9 GenerateRHS[Vol~{idom }]; SolveAgain[Vol~{idom }];

10 EndIf
11 If(GenerateVolFlag ~{idom} == 0)
12 // first time generation and factorization of the matrix
13 Generate[Vol~{idom }]; Solve[Vol~{idom }];
14 GenerateVolFlag ~{idom} = 1;
15 EndIf
16 EndFor
17 // go back to parallel mode
18 SetCommWorld;
19 Return

Listing 14: Macro used to solve the volume problem. The two commands SetCommSelf and
SetCommWorld let GetDDM respectively go into sequential mode and come back to parallel
mode. (Code extracted from the file SchwarzMacros.pro.)

1 Macro SolveSurfacePDE
2 SetCommSelf;
3 // compute g_in for next iteration
4 For ii In {0:# ListOfSubdomains () -1}
5 idom = ListOfSubdomains(ii);
6 // solve the surface PDE on the boundaries of each subdomain
7 For iSide In {0:1}
8 If(NbrRegions[Sigma~{idom }~{ iSide }])
9 If(GenerateSurFlag ~{idom }~{ iSide})

10 // the matrix is already factorized , only regenerate the RHS
11 GenerateRHS[Sur~{idom }~{ iSide }]; SolveAgain[Sur~{idom }~{ iSide }];
12 EndIf
13 If(GenerateSurFlag ~{idom }~{ iSide} == 0)
14 // first time generation and factorization of the matrix
15 Generate[Sur~{idom }~{ iSide }]; Solve[Sur~{idom }~{ iSide }];
16 GenerateSurFlag ~{idom }~{ iSide} = 1;
17 EndIf
18 EndIf
19 EndFor
20 EndFor
21 SetCommWorld;
22 Return

Listing 15: Macro SolveSurfacePDE that solves the surface problem. (Code extracted from the
file SchwarzMacros.pro.)
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1 Macro UpdateSurfaceFields
2 SetCommSelf;
3 // store g in ListOfFields ()
4 For ii In {0:# ListOfSubdomains () -1}
5 idom = ListOfSubdomains(ii);
6 For iSide In {0:1}
7 PostOperation[g_out ~{idom }~{ iSide }];
8 EndFor
9 EndFor

10 SetCommWorld;
11 Return

Listing 16: Macro to update the surface fields. (Code extracted from the file
SchwarzMacros.pro.)

Preconditioning. The IterativeLinear solver can handle both left and right preconditioners:
they can be specified in between a second pair of braces after the operations implement-
ing the main matrix-vector product—see Listing 13. Preconditioners are a topic of high
interest for domain decomposition methods as it is well-known that a DDM without pre-
conditioner (one-level DDM) is not scalable with respect to the number of subdomains.
Such preconditioners are often referred to as coarse grids, a vocabulary coming historically
from mechanics where, indeed, a coarse grid is built with e.g. one point per subdomain, and
a global PDE is solved on it in order to transfer low-frequency information over the whole
domain. While efficient preconditioners are well-known for Laplace-type PDEs, these clas-
sical coarse grids fail for wave-type problems. Designing preconditioners for high-frequency
time-harmonic wave problems is an active research field, with recent promising advances in
sweeping-type approaches [27, 56, 59]. GetDDM can be used to test these preconditioners,
and several variants of sweeping preconditioners are implemented in the Schwarz.pro file,
with various degrees of parallelization [60]6.

Overlapping decompositions. Using overlaps between the subdomains can significantly im-
prove the convergence of DDMs [32, 29], albeit at the additional cost of larger volume
subproblems. Such overlapping decompositions are directly handled with GetDDM at the
level of the geometrical description and the mesh; the only modification in the formula-
tions is at the level of the surface field updates like (5), where the Neumann data must be
evaluated explicitly since it can no longer be eliminated, the interfaces Σij and Σji being
distinct from each other. Listing 17 shows the part of the script that is modified to treat
overlapping decompositions.

Non-conforming meshes. GetDDM makes it easy to handle non-conforming meshes (Mortar
methods [7, 10] or NICEM method [31, 42]), as the data between subdomains is exchanged
in the form of Fields, which are interpolable. Non-conforming meshes can be useful
in a variety of settings, e.g. for multi-physics couplings or adaptive simulations. Another
practical interest is linked to parallel mesh generation: relaxing the conformity on interfaces
allows for coarse-grained, embarrassingly parallel mesh generation, where each subdomain
is handled by its separate CAD representation. The waveguide3d.geo file provides an
example of such an approach.

Other formulations and physical problems. In addition to the standard formulations pre-
6GetDDM currently only handles matrix-free preconditioners: implementing explicit coarse space corrections

requires a modification of the C++ source code.
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1 Galerkin { [ Dof{g_out~{idom }~{ iSide }} , {g_out ~{idom }~{ iSide}} ];
2 In Sigma_e ~{idom }~{ iSide }; Jacobian JSur; Integration I1; }
3 Galerkin { [ - {d u~{idom}} , {d g_out~{idom }~{ iSide}} ];
4 In Omega_o ~{idom }~{ iSide }; Jacobian JVol; Integration I1; }
5 Galerkin { [ k[]^2 * {u~{idom}} , { g_out ~{idom }~{ iSide}} ];
6 In Omega_e ~{idom }~{ iSide }; Jacobian JVol; Integration I1; }
7

8 If(TC_TYPE == 0) // IBC
9 Galerkin { [ I[] * kIBC[] * {u~{idom}} , {g_out~{idom }~{ iSide }} ];

10 In Sigma_e ~{idom }~{ iSide }; Jacobian JSur; Integration I1; }
11 EndIf

Listing 17: Modification of lines 1–10 of Listing 9 to treat a decomposition with overlap: Sigma_e
represents the part of the boundary of Ωj embedded in Ωi; Omega_o represents the overlap Ωi∩Ωj .

sented in this paper for the Helmholz and the Maxwell problems, various other formulations
can be readily implemented in the .pro files: mixed formulations (e.g. pressure-velocity
formulations for Helmholtz), dual formulations (e.g. in terms of the magnetic field for
Maxwell), etc. Time-dependent and non-linear problems can also be investigated using
standard features of the underlying software, as can be applications to other physical
problems (e.g. elastodynamics or Schrödinger). Finally, several coupled, multi-physics
problems (e.g. electro-mechanical) have been tested as well.

4 Complete Examples

Several complete examples for both Helmholtz and Maxwell problems are available online. Here
are the simple steps to run these examples interactively in serial mode (see Figure 1):

1. Download and uncompress the GetDDM code bundle:

• Windows: http://onelab.info/files/gmsh-getdp-Windows64.zip

• MacOS: http://onelab.info/files/gmsh-getdp-MacOSX.zip

• Linux: http://onelab.info/files/gmsh-getdp-Linux64.zip

• Source code: http://onelab.info/files/gmsh-getdp-source.zip

2. Launch Gmsh (e.g. double-click on the gmsh.exe executable on Windows).

3. Open the models/ddm_waves/main.pro file with the File>Open menu.

4. Click on Run.

Different test-cases can be chosen by selecting the appropriate Problem in the menu to the
left of the graphics window. Top-level parameters (type of transmission condition, number of
subdomains, frequency, etc.) can be changed interactively in the menu as well.

This interactive use of GetDDM is useful for testing, demonstration and visualization pur-
poses. For actual, parallel computations, you will need to recompile the GetDDM source
code for your particular computer architecture and MPI implementation. Detailed installa-
tion instructions are available on the website of the GetDDM project, at the address: http:
//onelab.info/wiki/GetDDM. Once compiled, GetDDM is then called from the command
line, using (depending on your MPI setup), commands similar to the following (here for the
waveguide3d test-case, on 100 CPUs):
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Figure 1: Graphical user interface of GetDDM. (Displayed test-case is cobra, with PML trans-
mission conditions.)

mpirun -np 100 gmsh -setnumber N_DOM 100 waveguide3d.geo -
mpirun -np 100 getdp -setnumber N_DOM 100 waveguide3d.pro -solve DDM

Sample scripts for running large scale computations on computer clusters using the SLURM or
PBS job schedulers are also provided in the models/ddm_waves directory.

In all cases (interactive, serial or parallel), the input files and the workflow are the same:
a geometry (file.geo) is constructed, meshed and partitioned into subdomains using Gmsh;
then the problem definition (file.pro) is analyzed and processed by GetDP. The geometry
and problem definition files usually include a data file (file_data.geo) containing parameters
common to Gmsh and GetDP. Figure 2 lists some of the complete examples available online,
together with references to published work where additional information about the test-cases can
be found. Some of these examples can be solved in both the Helmholtz and Maxwell setting (e.g.
waveguide3d or cylinder_concentric); others are only designed for the Helmholtz case (e.g.
marmousi). With the default set of parameters, all these test-cases will run on standard laptop
or desktop computers. But they can all also be scaled up to test the algorithms on massively
parallel computers. For example, a Helmholtz problem on the marmousi example was run at
frequency ω

2π = 700 (about 4000 wavelengths in the domain, uniformly discretized by a mesh
density of 20 points per the smallest wavelength), with 358 subdomains for a total of 4296 CPUs
(cores). The size of the full problem exceeded 2.3 billions unknowns. A Maxwell simulation of
the waveguide3d model was performed with 3,500 subdomains on 3,500 CPUs (cores), with a
total number of unknowns exceeding 300 million.

All the specific problem files include the same generic implementation of the Schwarz domain
decomposition algorithm, contained in the following 5 files:

Decomposition.pro
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a. circle_concentric b. circle_pie c. cylinder_concentric d. sphere_concentric

e. waveguide2d f. waveguide3d g. cobra h. marmousi

Figure 2: Sample models available online at http://onelab.info/wiki/GetDDM. a., b., c.,
d.: acoustic or electromagnetic (c. and d. only) scattering by cylindrical or spherical obstacles,
with concentric or radial subdomains [13, 25]. e., f.: guided acoustic or electromagnetic waves
in rectangular waveguides [59]. g.: guided acoustic or electromagnetic waves in the COBRA
benchmark defined by the JINA98 workgroup [60]. h.: acoustic waves in the underground
Marmousi model [56].

Schwarz.pro
SchwarzMacros.pro
Helmholtz.pro
Maxwell.pro

As explained in Sections 3.2.1 and 3.2.2, Decomposition.pro defines the subdomains and the
communication layout. The files Schwarz.pro and SchwarzMacros.pro that implement the
iterative linear solver have been presented in Section 3.2.3. And finally Helmholtz.pro and
Maxwell.pro contain the physics-specific function spaces and weak formulations, detailed in
Section 3.1.

For illustration purposes, Figure 3 presents some other cases that have been solved using Get-
DDM. Published references are provided, which contain further information about the specific
test cases, mathematical models and numerical results.

5 Conclusion

This article introduced a new open source software, called GetDDM, for testing optimized
Schwarz domain decomposition methods for time-harmonic wave problems. The software aims
to provide a simple, flexible and ready-to-use environment where the weak formulations of the
wave propagation problems and associated transmission conditions for the Schwarz methods are
transcribed naturally, with a direct link to their symbolic mathematical representation. The
code and a variety of examples for both Helmholtz and Maxwell problems are freely available
online for further testing, at the address: http://onelab.info/wiki/GetDDM. Depending on
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Figure 3: Sample models solved with GetDDM. Top: acoustic waves around a submarine (im-
age reproduced from [13]). Bottom: electromagnetic waves around a Falcon aircraft (images
reproduced from [25]).
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the chosen parameters (frequency, mesh refinement, number of subdomains, etc.) the same files
can run with a few thousands of unknowns on laptop computers or even tablets; or with billions
of unknowns on massively parallel computer clusters.

In addition to the application of GetDDM to other physical problems like elastodynamics
or the Schrödinger equation, ongoing work includes the development of a better interface to
automatic mesh partitioning tools, as well as the investigation of techniques to handle cross-
points and cross-edges in a scalable manner. These new developments will undoubtedly result
in new interesting applications, and further online examples on the GetDDM web site.
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