[en] Sounding rocket measurements conducted in 1988 under high solar activity conditions revealed that the intensity of thermospheric OI emissions at 98.9 nm present an anomalous vertical profile, showing exospheric intensities much higher than expected from radiative transfer model results, which included the known sources of excited oxygen. All attempts based on modeling of the photochemical processes and radiative transfer were unable to account for the higher than predicted brightnesses. More recently, the SOHO-SUMER instrument measured the UV solar flux at high spectral resolution, revealing the importance of a significant additional source of oxygen emission at 98.9 nm that had not been accounted for before. In this study, we simulate the radiative transfer of the OI-98.9 nm multiplet, including the photochemical sources of excited oxygen, the resonant scattering of solar photons, and the effects of non-thermal atoms, i.e. a population of fast-moving oxygen atoms in excess of the Maxwellian distribution. Including resonance scattering of the 98.9 nm solar multiplet, we find good agreement with the previous sounding rocket observation. The inclusion of a nonthermal oxygen population with a consistent increase of the total density produces a larger intensity at high altitude that apparently better accounts for the observation, but such a correction cannot be demonstrated given the uncertainties of the observations. A good agreement between model and sounding rocket observation is also found with the triplet at 130.4 nm. We further investigate the radiative transfer of the OI-98.9 nm multiplet, and the oxygen emissions at 130.4 and 135.6 nm using observations from the STP78-1 satellite. We find a less satisfying agreement between the model and the STP78-1 data that can be accounted for by scaling the modelled intensity within a range acceptable given the uncertainties on the STP78-1 absolute calibration.
Disciplines :
Space science, astronomy & astrophysics
Author, co-author :
Hubert, Benoît ; Université de Liège > Département d'astrophys., géophysique et océanographie (AGO) > Labo de physique atmosphérique et planétaire (LPAP)
Gérard, Jean-Claude ; Université de Liège - ULiège > Département d'astrophys., géophysique et océanographie (AGO) > Département d'astrophys., géophysique et océanographie (AGO)
Shematovich, Valery I.; Institute of Astronomy of the Russian Academy of Sciences, Moscow, Russia
Bisikalo, Dmitri V.; Institute of Astronomy of the Russian Academy of Sciences, Moscow, Russia
Chakrabarti, Supriya; University of Massachusetts > Lowell Center for Space Science and Technology
Gladstone, George Randall; Southwest Research Institute, San Antonio, TX, USA
Language :
English
Title :
Nonthermal radiative transfer of oxygen 98.9 nm ultraviolet emission: Solving an old mystery
Abreu, V. J.; A. Dalgarno, J. H. Yee, S. Chakrabarti, and, S. C. Solomon, (1984), The OI 989-Å tropical nightglow, Geophys. Res. Lett.; 11, 569-571.
Ajello, J. M.; and, D. E. Shemansky, (1985), A reexamination of important N2 cross section by electron impact with application to the dayglow: The Lyman-Birge-Hopfield band system and N I (119.99 nm), J. Geophys. Res.; 90, 9845-9861.
Bailey, S. M.; C. A. Barth, and, S. C. Solomon, (2002), A model of nitric oxide in the lower thermosphere, J. Geophys. Res.; 107 (A8), 1205, doi: 10.1029/2001JA000258.
Bates, D. R.; (1962), Dielectronic recombination to normal nitrogen and oxygen ions, Planet. Space Sci.; 9, 77-79.
Bilitza, D.; (Ed.) (1990), International Reference Ionosphere 1990, pp. 90-22, NSSDC, Greenbelt, Md.
Bowen, I. S.; (1935), The spectrum and composition of gaseous nebulae, Astrophys. J.; 81, 1.
Bowyer, S.; R. Kimble, F. Paresce, M. Lampton, and, G. Penegor, (1981), Continuous-readout extreme-ultraviolet airglow spectrometer, Appl. Opt.; 20, 477-486.
Chakrabarti, S.; F. Paresce, S. Bowyer, R. Kimble, and, S. Kumar, (1983), The extreme ultraviolet day airglow, J. Geophys. Res.; 88, 4898-4904.
Cotton, D. M.; (1991), A study of the terrestrial thermosphere by remote sensing of OI dayglow in the far and extreme ultraviolet a thesis.
Cotton, D. M.; S. Chakrabarti, and, G. R. Gladstone, (1993a), Preliminary results from the Berkeley EUV airglow rocket spectrometer: OI and N2 FUV/EUV dayglow in the thermosphere and lower exosphere, J. Geophys. Res.; 98, 21,627-21,641.
Cotton, D. M.; G. R. Gladstone, and, S. Chakrabarti, (1993b), Sounding rocket observation of a hot atomic oxygen geocorona, J. Geophys. Res.; 98, 21,651-21,657.
Curdt, W.; P. Brekke, U. Feldman, K. Wilhelm, B. N. Dwivedi, U. Schühle, and, P. Lemaire, (2001), The SUMER spectral atlas of solar-disk features, Astron. Astrophys.; 375, 591-613, doi: 10.1051/0004-6361:20010364.
De Jager, C.; (1964), Solar X-radiation, in Astronomical Observations from Space Vehicles, vol. 45, edited by, J. L. Steinberg, pp. 369, Taffin-Lefort, Liège, Belgium.
Feautrier, P.; (1964), Sur la résolution numérique de l'équation de transfert, C. R. Acad. Sci. Paris, 258, 3189.
Froese Fischer, C.; and, H. P. Saha, (1983), Multiconfiguration Hartree-Fock results with Breit-Pauli corrections for forbidden transitions in the 2p4 configuration, Phys. Rev. A, 28, 3169-3178, doi: 10.1103/PhysRevA.28.3169.
Gérard, J. C.; P. G. Richards, V. I. Shematovich, and, D. V. Bisikalo, (1995), The importance of new chemical sources for the hot oxygen geocorona, Geophys. Res. Lett.; 3, 279-282.
Gérard, J.-C.; B. Hubert, V. I. Shematovich, D. V. Bisikalo, and, G. R. Gladstone, (2008), The Venus ultraviolet oxygen dayglow and aurora: Model comparison with observations, Planet. Space Sci.; 56, 542-552.
Gérard, J. C.; B. Hubert, J. Gustin, V. I. Shematovich, D. Bisikalo, G. R. Gladstone, and, L. W. Esposito, (2010), EUV spectroscopy of the Venus dayglow with UVIS on Cassini, Icarus, 211, 70-80, doi: 10.1016/j.icarus.2010.09.020.
Gladstone, G. R.; (1982), Radiative transfer with partial frequency redistribution in inhomogeneous atmospheres: Application to the Jovian aurora, J. Quant. Spectrosc. Radiat. Transfer, 5, 545, doi: 10.1016/0022-4073(82)90107-8.
Gladstone, G. R.; (1985), Radiative transfer of resonance lines with internal sources, J. Quant. Spectrosc. Radiat. Transfer, 33, 453-458.
Gladstone, G. R.; (1988), UV Resonance line dayglow emissions on Earth and Jupiter, J. Geophys. Res.; 93, 14,623-14,630.
Gladstone, G. R.; (1992), Solar O I 1304-Å triplet line profiles, J. Geophys. Res.; 97 (A12), 19,519-19,525, doi: 10.1029/92JA00991.
Hedin, A. E.; (1989), Hot oxygen geocorona as inferred from neutral exospheric models and mass spectrometer measurements, J. Geophys. Res.; 94, 5523-5529.
Hedin, A. E.; (1991), Extension of the MSIS thermosphere model into the middle and lower atmosphere, J. Geophys. Res.; 96, 1159-1172.
Hickey, M. P.; P. G. Richards, and, D. G. Torr, (1995), New sources for the hot oxygen geocorona: Solar cycle, seasonal, latitudinal and diurnal variations, J. Geophys. Res.; 100, 17,377-17,388.
Hinteregger, H. E.; K. Fukui, and, B. R. Gilson, (1981), Observational, reference and model data on solar EUV, from measurements on AE-E, Geophys. Res. Lett.; 8, 1147-1150.
Horan, D. M.; and, R. W. Kreplin, (1981), Simultaneous measurements of EUV and soft X-ray solar flare emission, Sol. Phys.; 74, 265-272.
Hubert, B.; J. C. Gérard, D. M. Cotton, D. V. Bisikalo, and, V. I. Shematovich, (1999), Effect of hot oxygen on thermospheric OI UV airglow, J. Geophys. Res.; 104, 17,139-17,143.
Hubert, B.; J. C. Gérard, J. Gustin, V. I. Shematovich, D. V. Bisikalo, A. I. Stewart, and, G. R. Gladstone, (2010), UVIS observations of the FUV OI and CO 4P Venus dayglow during the Cassini flyby, Icarus, 207, 549-557, doi: 10.1016/j.icarus.2009.12.029.
Kella, D.; P. J. Johnson, H. B. Pederson, L. Vejby-Christensen, and, L. H. Anderson, (1997), The source of the green light emission determined from a storage ring experiment, Science, 276, 1530-1533.
Killen, R.; D. Shemansky, and, N. Mouawad, (2009), Expected emission from Mercury's exospheric species, and their ultraviolet-visible signatures, Astrophys. J. Suppl. Ser.; 181, 351.
Kreplin, R. W.; K. P. Dere, D. M. Horan, and, J. F. Meeking, (1977), The solar spectrum below 10 Å, in The Solar Output and Its Variations, edited by, O. D. White, pp. 286, Univ. Press, Boulder.
Link, R.; G. R. Gladstone, S. Shakrabarti, and, J. C. McConnell, (1988), An analysis of satellite observations of the OI EUV dayglow, J. Geophys. Res.; 93, 2693-2714.
Majeed, T.; and, D. J. Strickland, (1997), New survey of electron impact cross sections for photoelectron and auroral electron energy loss calculations, J. Phys. Chem. Ref. Data, 26 (2), 335, doi: 10.1063/1.556008.
Manson, J. E.; (1977), Solar spectrum between 10 and 300 Å, in The Solar Output and Its Variations, edited by, O. D. White, pp. 286, Univ. Press, Boulder.
Mc Neal, R. J.; M. E. Whitson Jr.; and, G. R. Cook, (1974), Temperature dependence of the quenching of vibrationally excited nitrogen by atomic oxygen, J. Geophys. Res.; 79, 1527-1531.
Meier, R. R.; (1991), Ultraviolet spectroscopy and remote sensing of the upper atmosphere, Space Sci. Rev.; 58, 1-185.
Meier, R. R.; D. E. Anderson Jr.; L. J. Paxton, R. P. McCoy, and, S. Chakrabarti, (1987), The OI 3d 3D0-2p4 3P transition at 1026 Å in the day airglow, J. Geophys. Res.; 92, 8767-8773.
Moore, C. E.; (1993), Tables of spectra of hydrogen, carbon, nitrogen, and oxygen atoms and ions, in CRC Series in Evaluated Data in Atomic Physics, edited by, J. W. Gallagher, 339 pp.; CRC Press, Boca Raton, Fla.
Nagy, A. F.; and, P. M. Banks, (1970), Photoelectron fluxes in the ionosphere, J. Geophys. Res.; 75, 6260-6270.
Péquignot, D.; (1990), Populations of the OI metastable levels, Astron. Astrophys.; 231, 499-508.
Reader, J.; C. H. Corliss, W. L. Wiese, and, G. A. Martin, (1980), Wavelengths and Transition Probabilities for Atoms and Atomic Ions, Part. I. Wavelengths, Part II. Transition Probabilities, Nat. Stand. Ref. Data Ser.; vol. 68, NSRDS-NBS, Washington, D. C.
Rees, M. H.; (1989), Physics and Chemistry of the Upper Atmosphere, Cambrige Univ. Press, Cambrige.
Richards, P. G.; M. P. Hickey, and, D. G. Torr, (1994a), New sources for the hot oxygen geocorona, Geophys. Res. Lett.; 21, 657-660.
Richards, P. G.; J. A. Fenelly, and, D. G. Torr, (1994b), EUVAC: A solar EUV flux model for aeronomic calculations, J. Geophys. Res.; 99, 8981-8992.
Roble, R. G.; (1995), Energetics of the mesosphere and thermosphere, in The Upper Mesosphere and Lower Thermosphere, Geophys. Monogr. Ser.; vol. 87, edited by, R. M. Johnson, and, T. L. Killeen, AGU, Washington, D. C.
Sharma, R.; B. Zygelman, F. von Esse, and, A. Dalgarno, (1994), On the relationship between the population of the fine structure levels of the ground electronic state of atomic oxygen and the translational temperature, Geophys. Res. Lett.; 21, 1731-1734.
Shematovich, V. I.; D. V. Bisikalo, and, J. C. Gérard, (1994), A kinetic model of the formation of the hot oxygen geocorona. 1. Quiet geomagnetic conditions, J. Geophys. Res.; 99, 23,217-23,228.
Shizgal, B.; and, M. J. Linderfeld, (1980), Further studies of non-Maxwellian effects associated with the thermal escape of a planetary atmosphere, Planet. Space Sci.; 28, 159-163.
Siskind, D. E.; D. J. Strickland, R. R. Meier, T. Majeed, and, F. G. Eparvier, (1995), On the relationship between the solar soft X ray flux and thermospheric nitric oxide: An update with an improved photoelectron model, J. Geophys. Res.; 100, 19,687-19,694, doi: 10.1029/95JA01609.
Smith, E. V. P.; and, D. M. Gottlieb, (1974), Solar flux and its variations, Space Sci. Rev.; 16, 771.
Solomon, S. C.; (2001), Auroral particle transport using Monte Carlo and hybrid methods, J. Geophys. Res.; 106, 107-116.
Solomon, S. C.; and, V. J. Abreu, (1989), The 630 nm dayglow, J. Geophys. Res.; 94, 6817-6824.
Solomon, S. C.; P. B. Hays, and, V. Abreu, (1988), The auroral 6300 Å emission: Observation and modeling, J. Geophys. Res.; 93, 9867-9882.
Solomon, S. C.; S. M. Bailey, and, T. N. Woods, (2001), Effect of solar soft X-rays on the lower atmosphere, Geophys. Res. Lett.; 28, 2149-2152.
Strickland, D. J.; J. S. Evans, and, L. J. Paxton, (1995), Satellite remote sensing of thermospheric O/N2 and solar EUV, 1. Theory, J. Geophys. Res.; 10, 12,217-12,226, doi: 10.1029/95JA00574.
Strickland, D. J.; T. Majeed, J. S. Evans, R. R. Meier, and, J. M. Picone, (1997), Analytical representation of g factors for rapid, accurate calculation of excitation rates in the dayside thermosphere, J. Geophys. Res.; 102, 14,485-14,498, doi: 10.1029/97JA00943.
Strickland, D. J.; J. Bishop, J. S. Evans, T. Majeed, P. M. Shen, R. J. Cox, R. Link, and, R. E. Huffman, (1999), Atmospheric Ultraviolet Radiance Integrated Code (AURIC): Theory, software architecture, inputs, and selected results, J. Quant. Spectros. Radiat. Transfer, 62, 689, doi: 10.1016/S0022-4073(98)00098-3.
Swaminathan, P. K.; et al.; (1998), Nitric oxide abundance in the mesosphere/lower thermosphere region: Roles of solar soft X rays, suprathermal N(4S) atoms, and vertical transport, J. Geophys. Res.; 103, 11,579-11,594, doi: 10.1029/97JA03249.
Tinsley, B. A.; and, A. B. Christensen, (1973), Excitation of oxygen permitted line emission in the tropical nightglow, J. Geophys. Res.; 78, 1174-1186.
Tobiska, W. K.; (2004), SOLAR2000 irradiances for climate change, aeronomy and space system engineering, Adv. Space Res.; 34, 1736-1746.
Torr, M. R.; D. G. Torr, P. G. Richards, and, S. P. Yung, (1990), Mid- and low- latitude model of thermospheric emission 1. O+(2P) 7320 Å and N2(2P) 3371 Å, J. Geophys. Res.; 95, 21,147-21,168.
Wagner, W. J.; (1988), Observations of 1-8 Å solar X-ray variability during solar cycle 21, Adv. Space Res.; 8, 67-76.
Wiese, W. L.; J. R. Fuhr, and, T. M. Deters, (1996), Atomic Transition Probabilities of Carbon, Nitrogen, and Oxygen-A Critical Data Compilation, J. Phys. Chem. Ref. Data, Monogr.; vol. 7, pp. 532, AIP Press, Melville, N. Y.
Woods, T.; and, G. Rottman, (2002), Solar ultraviolet variability over time periods of aeronomic interest, in Atmospheres in the Solar System: Comparative Aeronomy, Geophys. Monogr. Ser.; vol. 130, edited by, M. Mendillo, A. Nagy, and, J. H. Waite, pp. 221-234, AGU, Washington, D. C.
Yee, J. H.; J. W. Meriwether, and, P. B. Hays, (1980), Detection of a corona of fast oxygen atoms during solar maximum, J. Geophys. Res.; 85, 3396-3400.
Zygelman, B.; A. Dalgarno, and, R. D. Sharma, (1994), Excitation of the 3PJ=0,1,2 fine structure of atomic oxygen in collisions with oxygen atoms, Phys. Rev. A, 50, 3920.