[en] Hydrogeophysics has become a major field of research in the past two decades and time-lapse electrical resistivity tomography (ERT) is one of the most popular techniques to monitor passive and active processes in shallow subsurface reservoirs. Time-lapse inversion schemes have been developed to refine inversion results, but they mostly still rely on a spatial regularization procedure based on the standard smoothness constraint. In this paper, we propose to apply a covariance-based regularization operator in the time-lapse ERT inverse problem. We first illustrate the method for surface and cross-hole ERT with two synthetic cases and compare the results with the smoothness-constrained inversion (SCI). The examples show that the covariance–constrained inversions (CCI) better image the anomaly both in terms of shape and amplitude. Although more important in low-sensitivity zones, improvements are observed everywhere in the tomograms. Those synthetic examples also show that an error made in the range or in the type of the variogram model has a limited impact on the resulting image, which still remains better than SCI. The method is then applied to cross-borehole ERT field data from a heat tracing experiment, where the comparison with direct measurements shows a strong improvement of the breakthrough curves retrieved from ERT. The proposed method could be extended to the time dimension which would allow the use of CCI in 4D inversion schemes.
Research Center/Unit :
Applied Geophysics
Disciplines :
Geological, petroleum & mining engineering
Author, co-author :
Hermans, Thomas ; Université de Liège > Département ArGEnCo > Géophysique appliquée
Kemna, Andreas
Nguyen, Frédéric ; Université de Liège > Département ArGEnCo > Géophysique appliquée
Language :
English
Title :
Covariance-constrained difference inversion of time-lapse electrical resistivity tomography data
scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.
Bibliography
Ajo-Franklin, J. B., B. J. Minsley, and T. M. Daley, 2007, Applying compactness constraints to differential traveltime tomography: Geophysics, 72, no. 4, R67-R75, doi: 10.1190/1.2742496.
Arato, A., J. Boaga, C. Comina, M. De Seta, E. Di Sipio, A. Galgaro, N. Giordano, and G. Mandrone, 2015, Geophysical monitoring for shallow geothermal applications-Two Italian case histories: First Break, 33, 75- 79.
Audebert, M., R. Clément, N. Touze-Foltz, T. Günther, S. Moreau, and C. Duquennoi, 2014, Time-lapse ERT interpretation methodology for leachate injection monitoring based on multiple inversions and a clustering strategy (MICS): Journal of Applied Geophysics, 111, 320-333.
Binley, A., S. S. Hubbard, J. A. Huisman, A. Revil, D. A. Robinson, K. Singha, and L. D. Slater, 2015, The emergence of hydrogeophysics for improved understanding of subsurface processes over multiple scales: Water Resources Research, 51, 3837-3866, doi: 10.1002/2015WR017016.
Binley, A., P. Winship, L. J. West, M. Pokar, and R. Middleton, 2002, Seasonal variation of moisture content in unsaturated sandstone inferred from borehole radar and resistivity profiles: Journal of Hydrology, 267, 160- 172.
Blaschek, R., A. Hördt, and A. Kemna, 2008, A new sensitivity-controlled focusing regularization scheme for the inversion of induced polarization based on the minimum gradient support: Geophysics, 73, no. 2, F45-F54, doi: 10.1190/1.2824820.
Carrigan, C. R., X. Yang, D. J. LaBrecque, D. Larsen, D. Freeman, A. L. Ramirez, W. Daily, R. Aines, R. Newmark, J. Friedman, and S. Hovorka, 2013, Electrical resistance tomographic monitoring of CO2 movement in deep geologic reservoirs: International Journal of Greenhouse Gas Control, 18, 401-408.
Caterina, D., T. Hermans, and F. Nguyen, 2014, Case studies of prior information in electrical resistivity tomography: Comparison of different approaches: Near Surface Geophysics, 12, 451-465, doi: 10.3997/ 1873-0604.2013070.
Chasseriau, P., and M. Chouteau, 2003, 3D gravity inversion using a model of parameter covariance: Journal of Applied Geophysics, 52, 59-74.
Coscia, I., S. A. Greenhalgh, N. Linde, J. Doetsch, L. Marescot, T. Gu, T. Vogt, and A. Green, 2011, 3D crosshole ERT for aquifer characterization and monitoring of infiltrating river water: Geophysics, 76, no. 2, G49- G59, doi: 10.1190/1.3553003.
Day-Lewis, F. D., J. M. Harris, and S. M. Gorelick, 2002, Time-lapse inversion of crosswell radar data: Geophysics, 67, 1740-1752, doi: 10 .1190/1.1527075.
de Groot-Hedlin, C., and S. Constable, 1990, Occam's inversion to generate smooth, two dimensional models from magnetotelluric data: Geophysics, 55, 1613-1624, doi: 10.1190/1.1442813.
Doetsch, J., N. Linde, and A. Binley, 2010, Structural joint inversion of timelapse crosshole ERT and GPR traveltime data: Geophysical research Letters, 37, L24404.
Doetsch, J., N. Linde, M. Pessognelli, A. G. Green, and T. Günther, 2012a, Constraining 3-D electrical resistance tomography with GPR reflection data for improved aquifer characterization: Journal of Applied Geophysics, 78, 68-76, doi: 10.1016/j.jappgeo.2011.04.008.
Doetsch, J., N. Linde, T. Vogt, A. Binley, and A. G. Green, 2012b, Imaging and quantifying salt-tracer transport in a riparian groundwater system by means of 3D ERT monitoring: Geophysics, 77, no. 5, B207-B218, doi: 10 .1190/geo2012-0046.1.
Farquharson, C. G., and D. W. Oldenburg, 1998, Non-linear inversion using general measures of data misfit and model structure: Geophysical Journal International, 134, 213-227.
Fiandaca, G., J. Doetsch, G. Vignoli, and E. Auken, 2015, Generalized focusing time-lapse changes with applications to direct current and time-domain induced polarization inversions: Geophysical Journal International, 203, 1101-1112.
Franklin, J. N., 1970, Well-posed stochastic extensions of ill-posed linear problems: Journal of Mathematical Analysis and Applications, 31, 682-716.
Hansen, T. M., A. G. Journel, A. Tarantola, and K. Mosegaard, 2006, Linear inverse Gaussian theory and geostatistics: Geophysics, 71, no. 6, R101- R111, doi: 10.1190/1.2345195.
Hermans, T., F. Nguyen, T. Robert, and A. Revil, 2014, Geophysical methods for monitoring temperature changes in shallow low enthalpy geothermal systems: Energies, 7, 5093-5118.
Hermans, T., F. Nguyen, and J. Caers, 2015a, Uncertainty in training imagebased inversion of hydraulic head data constrained to ERT data:Workflow and case study: Water resources Research, 51, 5332-5352, doi: 10.1002/ 2014WR016460.
Hermans, T., A. Vandenbohede, L. Lebbe, R. Martin, A. Kemna, J. Beaujean, and F. Nguyen, 2012, Imaging artificial salt water infiltration using electrical resistivity tomography constrained by geostatistical data: Journal of Hydrology, 438-439, 168-180, doi: 10.1016/j.jhydrol.2012.03.021.
Hermans, T., S.Wildemeersch, P. Jamin, P. Orban, S. Brouyère, A. Dassargues, and F. Nguyen, 2015b, Quantitative temperature monitoring of a heat tracing experiment using cross-borehole ERT: Geothermics, 53, 14-26.
Hinnel, A. C., T. P. A. Ferre, J. A. Vrugt, J. A. Huisman, S. Moysey, J. Rings, and M. Kowalsky, 2011, Improved extraction of hydrologic information from geophysical data through coupled hydrogeophysical inversion: Water resources Research, 46, W00D40.
Holliger, K., J. Tronicke, H. Paasche, and B. Dafflon, 2008, Quantitative integration of hydrogeophysical and hydrological data: Geostatistical approaches, in C. Darnault, ed., Overexploitation and contamination of shared groundwater resources: Springer Netherlands, 67-82.
Irving, J., and K. Singha, 2010, Stochastic inversion of tracer test and electrical geophysical data to estimate hydraulic conductivities: Water resources Research, 46, W11514.
Isaaks, E. H., and R. M. Srivastava, 1989, An introduction to applied geostatistics: Oxford University Press, 561.
Johnson, T. C., P. S. Routh, T. Clemo,W. Barrash, and W. P. Clement, 2007, Incorporating geostatistical constraints in nonlinear inversion problems: Water resources Research, 43, W10422.
Johnson, T. C., R. J. Versteeg, M. Rockhold, L. D. Slater, D. Ntarlagiannis,W. J. Greenwood, and J. Zachara, 2012, Characterization of a contaminated wellfield using 3D electrical resistivity tomography implemented with geostatistical, discontinuous boundary, and known conductivity constraints: Geophysics, 77, no. 6, EN85-EN96, doi: 10.1190/geo2012-0121.1.
Kaipio, J. P., V. Kolehmainen, M. Vauhkonen, and E. Somersalo, 1999, Inverse problems with structural prior information: Inverse Problems, 15, 713-729.
Karaoulis, M. C., J. H. Kim, and P. I. Tsourlos, 2011, 4D active time constrained resistivity inversion: Journal of Applied Geophysics, 73, 25-34, doi: 10.1016/j.jappgeo.2010.11.002.
Kemna, A., 2000, Tomographic inversion of complex resistivity: Theory and application: Ph.D. thesis, Ruhr-University of Bochum.
Kemna, A., J. Vanderborght, B. Kulessa, and H. Vereecken, 2002, Imaging and characterization of subsurface solute transport using electrical resistivity tomography (ERT) and equivalent transport models: Journal of Hydrology, 267, 125-146.
Kim, J. H., M. J. Yi, S. G. Park, and J. G. Kim, 2009, 4-D inversion of DC resistivity monitoring data acquired over a dynamically changing earth model: Journal of Applied Geophysics, 68, 522-532.
Koestel, J., A. Kemna, M. Javaux, A. Binley, and H. Vereecken, 2008, Quantitative imaging of solute transport in an unsaturated and undisturbed soil monolith with 3D ERT and TDR: Water Resources Research, 44, W12411, doi: 10.1029/2007WR006755.
Krautblatter, M., S. Verleysdonk, A. Flores Orozco, and A. Kemna, 2010, Temperature-calibrated imaging of seasonal changes in permafrost rock walls by quantitative electrical resistivity tomography (Zugspitze, German/ Austrian Alps): Journal of Geophysical Research, 115, F02003, doi: 10.1029/2008JF001209.
LaBrecque, D. J., and X. Yang, 2001, Difference inversion of ERT data: A fast inversion method for 3-D in-situ monitoring: Journal of Environmental and Engineering Geophysics, 6, 83-90.
Linde, N., A. Binley, A. Tryggvason, L. B. Pedersen, and A. Revil, 2006, Improved hydrogeophysical characterization using joint inversion of cross-hole electrical resistance and ground-penetrating radar traveltime data: Water resources Research, 42, W12404, doi: 10.1029/ 2006WR0055131.
Maurer, H., K. Holliger, and D. Boerner, 1998, Stochastic regularization: Smoothness or similarity: Geophysical Research Letters, 25, 2889-2892.
Michalak, A. M., and S. Shlomi, 2007, A geostatistical data assimilation approach for estimating groundwater plume distributions from multiple monitoring events, in D. W. Hyndman, F. D. Day-Lewis, and K. Singha, eds., Subsurface hydrology, data integration for properties and processes: American Geophysical Union, Geophysical Monograph Series 171, 73- 88.
Nguyen, F., T. Robert, A. Kemna, and T. Hermans, 2016, Data-driven selection of the minimum gradient support parameter in time-lapse focused electrical imaging: Geophysics, 81, no. 1, A1-A5, doi: 10.1190/ geo2015-0226.1.
Oware, E., S. Moysey, and T. Khan, 2013, Physically based regularizatiom of hydrogeophysical inverse problems for improved imaging of processdriven systems: Water Resources Research, 49, 6238-6247.
Pidlisecky, A., E. Haber, and R. Knigth, 2007, RESINV3D: A 3D resistivity inversion package: Geophysics, 72, no. 2, H1-H10, doi: 10.1190/1 .2402499.
Portniaguine, O., and M. S. Zhdanov, 1999, Focusing geophysical inversion images: Geophysics, 64, 874-887, doi: 10.1190/1.1444596.
Robert, T., D. Caterina, J. Deceuster, O. Kaufmann, and F. Nguyen, 2012, A salt tracer test monitored with surface ERT to detect preferential flow and transport paths in fractured/karstified limestones: Geophysics, 77, no. 2, B55-B67, doi: 10.1190/geo2011-0313.1.
Rosas Carbajal, M., N. Linde, and T. Kalscheuer, 2012, Focused time-lapse inversion of radio and audio magnetotelluric data: Journal of Applied Geophysics, 84, 29-38.
Singha, K., F. D. Day-Lewis, T. Johnson, and L. D. Slater, 2015, Advances in interpretation of subsurface processes with time-lapse imaging: Hydrological Processes, 29, 1549-1576.
Slater, L., A. M. Binley, W. Daily, and R. Johnson, 2000, Cross-hole electrical imaging of a controlled saline tracer injection: Journal of Applied Geophysics, 44, 85-102.
Supper, R., D. Ottowitz, B. Jochum, A. Römer, S. Pfeiler, S. Kauer, M. Keushnig, and A. Ita, 2014, Geoelctrical monitoring of frozen ground and permafrost in alpine areas: Field studies and considerations towards an improved measuring technology: Near Surface Geophysics, 12, 93- 115.
Tarantola, A., and B. Valette, 1982, Generalized non-linear problems solved using the least-squares criterion: Review of Geophysics and Space Physics, 20, 219-232.
Wildemeersch, S., P. Jamin, P. Orban, T. Hermans, F. Nguyen, S. Brouyère, and A. Dassargues, 2014, Coupling heat and chemical tracer experiments for estimating heat transfer parameters in shallow alluvial aquifers: Journal of Contaminant hydrology, 169, 90-99.
Yeh, T.-C. J., and S. Liu, 2000, Hydraulic tomography: Development of a new aquifer test method: Water Resources Research, 36, 2095-2105.
Zhou, B., and S. A. Greenhalgh, 2000, Cross-hole resistivity tomography using different electrode configurations: Geophysical Prospecting, 48, 887-912.
This website uses cookies to improve user experience. Read more
Save & Close
Accept all
Decline all
Show detailsHide details
Cookie declaration
About cookies
Strictly necessary
Performance
Strictly necessary cookies allow core website functionality such as user login and account management. The website cannot be used properly without strictly necessary cookies.
This cookie is used by Cookie-Script.com service to remember visitor cookie consent preferences. It is necessary for Cookie-Script.com cookie banner to work properly.
Performance cookies are used to see how visitors use the website, eg. analytics cookies. Those cookies cannot be used to directly identify a certain visitor.
Used to store the attribution information, the referrer initially used to visit the website
Cookies are small text files that are placed on your computer by websites that you visit. Websites use cookies to help users navigate efficiently and perform certain functions. Cookies that are required for the website to operate properly are allowed to be set without your permission. All other cookies need to be approved before they can be set in the browser.
You can change your consent to cookie usage at any time on our Privacy Policy page.